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Abstract—Weather radar is a system that utilizes advanced
radio wave engineering to detect precipitation in the atmosphere.
One of the wave generation technique used in weather radar is
frequency-modulated continuous wave (FMCW), with dual
polarization for differentiating detected precipitation types by its
shape and size. Weather radar signal processing is usually
performed wusing digital signal processing and field-
programmable gate array (FPGA), that performs well but with
difficulty in system development and deployment. Software
implementation of weather radar signal processing enables easier
and faster development and deployment with the cost of
performance when done serially. Parallel implementation using
general purpose graphics processing units (GP-GPU) may
provide best of both worlds with easier development and
deployment compared to hardware-based solutions but with
better performance than serial CPU implementations. In this
paper, implementation of various optimization strategies weather
signal radar processing in GP-GPU environment on the Nvidia
CUDA platform is shown. Performance measurements show that
among optimization strategies implemented, only the utilization
of multiple CUDA streams give significant performance gain.
This paper contributes in attempts to build full weather radar
signal processing stack on GPU.
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I. INTRODUCTION

Radar, or radio detection and ranging, is a system that
utilizes radio wave to determine the existence of an object and
its range from the radar itself [1]. Originally radars were
designed to detect aircraft targets, with weather precipitations
considered noise, but more advanced radio wave engineering
enables radar to be used to map weather, with precipitations as
radar target [2].

Radar signal processing is usually done using digital signal
processor or field-programmable gate arrays [3][4], which
performs well but with drawbacks of difficulty in system
development and deployment. Software-based implementations
of radar signal processing enables simpler development and
faster deployment but does not perform well when
implemented serially. The state of general purpose graphics

processing units for high performance computing may provide
best of both world with ease of development and deployment,
but also with better performance compared to serial CPU
implementation.

Graphics processing units (GPU), originally designed to
process graphical display of computer systems, are now being
used for high performance, general purpose computing. Since
graphics processing usually involves same operations applied
on different elements of the graphic, known as pixels, GPU’s
are designed to be good at processing simple instructions on
multiple data at once. Weather radar signal data are usually
represented as matrices and its processing involves algorithms
with some amount of parallelism, which justifies the use of
general purpose GPU for weather radar signal processing. This
paper focuses on signal processing of frequency-modulated
continuous wave (FMCW) weather radars with dual
polarization.

II. WEATHER RADAR SIGNAL PROCESSING

Radars work by emitting radio waves and receiving back
the echoes caused by the waves hitting objects. Time difference
between transmitting the wave and receiving the echo is used
to determine the distance between the radar and the detected
object, or target. Other than distance, the position of a target is
also defined by its azimuth which in rotating radars such as the
FMCW radar can be determined directly from which direction
the antenna is facing when transmitting the wave that is
reflected by the object. Additionally, elevation angle of the
antenna may be used to determine the altitude at which the
target is positioned.

In radar signal processing, one full sweep of radar antenna
(360°) is divided into several discrete sectors that each
represents a certain range of azimuth. The received signal of
each sector is represented by a 1024x512 matrix, with number
of columns (512) representing the number of samples taken on
each sector and the number of rows (1024) representing
received signal in frequency domain for FMCW radar. This
frequency-domain signal can then be separated into 512 range
bins, which are discrete representation of distance, after
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application of fast-Fourier transform. Fig. 1 illustrates the
relationship between sectors and range bins.
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Fig. 1. Sectors and range bins.

Dual polarization radars such as the focus of this paper
transmits signals in both horizontal and vertical polarizations
[5]. This configuration allows the radar system to determine
target shape in addition to its size. Echoes of both polarizations
are received by both horizontal- and vertical-polarized
antennas, resulting in four kinds of signals: ones transmitted by
the horizontal antenna and received by horizontal receiver
(HH), its vertical counterpart (VV), ones transmitted by the
horizontal antenna and received by vertical receiver (HV), and
the other way around (VH). Since HV and VH essentially
contain the same information, only one of the two is
necessarily processed. As such there are three 1024x512
matrices to be processed in each sector in weather radar signal
processing.

The process applied to said matrices are divided into three
stages according to the output size of each stage. The first stage
takes the 1024x512 matrices and produces 512x512 matrices.
The second stage takes the result of the first stage and reduces
it into vectors sized 512. The third stage does calculation on the
resulted vectors to get desired outcomes that is reflectivity,
differential reflectivity, linear depolarization ratio, and mean
Doppler velocity. For this paper, only first two outcomes are
implemented. The full stages implemented are shown in Table
L.

TABLE I. STAGES IN DUAL-POLARIZED FMCW WEATHER RADAR
SIGNAL PROCESSING.

Stage Processes

1 Hamming window calculation
FFT on range profile
Clutter suppression
FFT on Doppler profile

Further clutter suppression

1T Power calculation on Doppler profile
Doppler cell filtering
Range bin filtering

1T Reflectivity calculation

Differential reflectivity calculation

III. PARALLEL COMPUTATION WITH GPU

GPU is a part of computer system which were originally
only used for processing graphical data for computer displays.
GPU gives better performance compared to CPU for graphics
processing by using many cores which execute the exact same
instruction for different graphics elements simultaneously.
GPU’s are also designed to be more efficient at doing simple
arithmetic and logical operations instead of controlling
program flow, conforming to the characteristics of graphics
processing.

As GPU technology continues to develop, current GPU’s
have theoretical performance that is multiples of CPU’s. GPU’s
are now not only used for processing graphics data but also for
general purpose computing, from which the term general-
purpose graphics processing unit emerges. GP-GPU’s are used
for high performance computing such as deep learning.

CUDA is a GP-GPU-based computing platform developed
by Nvidia, first introduced in 2006. CUDA enables GPU-based
software development using high-level languages such as C
and C++ [6].

IV. RELATED WORKS

There are many works attempting to use GPU for radar
signal processing, and they show that GPU indeed gives good
performance. These works differ from this paper in terms of the
types of radar in question and kinds of algorithms
implemented. Specifically, they focus on synthetic aperture
radar [7], air surveillance radars [8][10], pulsed-Doppler radar
[3], modular UHF ionosphere radar [9], and passive radar [11].
Some of these works concern with the full stack of process
[71[8][9] while the others only focus on part of the process such
as constant false alarm rate [3][11] or space-time adaptive
processing [10][11]. Venter’s work [3] influenced this paper in
terms of comparing different implementation strategies,
although it compares different task division strategies while
this paper compares different optimization strategies. Fallen’s
work [9] is unique in that it compares two different GPU
environments for the exact same case.

In this paper, both baseline serial implementation and
parallel implementations are developed based on CPU
implementation of weather radar signal processing as shown in
[12].

V. PERFORMANCE CONSIDERATIONS IN THE GPU

In designing parallel algorithms that utilizes GPU

optimally, there are several things to consider [13].

A. Warp partitioning

GPU executes single instruction simultaneously for all
threads. When a diverse conditional occurs in a GPU kernel,
threads no longer execute the same instructions and thus,
threads that take one path of the conditional must idly wait for
the others to finish before continuing. Ideally there should be
no conditional branching in a kernel to have maximum GPU
utilization. If conditionals are unavoidable, the diversity and
body of conditional blocks must be carefully designed.
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B. Memory coalescing

In CUDA programming model, memory latency is one
cause of bottleneck. How one organizes data within hierarchies
of memory is crucial to the efficiency of memory access. Data
that are logically “nearby” in the scope of the algorithm should
also be placed contiguous in the memory.

C. Dynamic partitioning of shared memory resource

Data can be partitioned multiple ways in a parallel
algorithm. In some cases, using many thread blocks with few
threads gives better performance than using few thread blocks
with many threads, but in others the other way around,
depending on the size of the data and what processes are
performed on them. In many case, dynamic partitioning is
necessary to gain better performance.

D. Data prefetching

Memory latency can be hidden by overlapping data transfer
with data processing. One technique is to load next data while
processing current data.

E. Instruction mix

Loop controls such as loop conditionals and loop counters
are additional computations that uses GPU resources. Loop
unrolling can be used in loops with definite number of
iterations to shave off some computational baggage.

F. Thread granularity

Conceptually, more threads mean more data being
processed at the same time, i.e. faster execution time. But,
number of threads is not linear to performance improvements
due to thread overheads. In some cases, using few large threads
is better than using many small ones.

G. Instruction-level parallelism

Instruction-level parallelism is another way to hide memory
latency. Having fewer threads that have independent operations
may give better utilization and improve performance up to 2x
[14].

VI. IMPLEMENTATION OF OPTIMIZATION STRATEGIES

Eleven kernels were made for processing weather radar
signal with two of them eventually merged into one, combined
with calls to existing library cuFFT for fast-Fourier transform
parts of the processing. Five of the kernels belong to Stage I of
the processing, four to Stage II, and one to Stage III. This
implementation is considered complete in terms of GPU usage,
since no part of processing is done in the CPU and thus the
only memory copy operations are in the beginning of sector
processing for copying received signals and in the end of sector
processing for copying the outcomes.

First implementation is a naive one, done by the book from
algorithm design without taking much considerations to GPU
optimizations. After the first implementation, dubbed the GO
version is proven to yield correct results, optimization
strategies are applied to see how much performance gain can
be achieved. Optimization strategies applied follows.

A. Block size adjustments

Two of the kernels implemented uses too few threads
within a block, so they are revised to employ fewer blocks with
more threads within them. Specifically, kernel calls for clipping
are modified from using 1024 blocks of 2 threads into 2 blocks
of 1024 threads, while kernel calls for reflectivity and
differential reflectivity calculations are modified from using
512 blocks of 1 thread into 1 block of 512 threads. This
version, named version GIl, corresponds with performance
consideration F (thread granularity).

B. Instruction-level parallelism

Instruction-level parallelism is achieved in two forms in
this implementation, one in the reduction kernels to process
several elements within a kernel, and one by merging two
kernels together.

In reduction kernels, it is achieved by processing several
elements in one kernel using unrolled loops. Experiments were
done with two, four, eight and 16 elements per kernel. This
reduction kernel optimization is implemented in version G2
and again in version G4.

In the second form, the kernel that is used for computing
complex number conjugates and the kernel for doing FFT shifts
are merged. Conjugates are achieved by multiplying the
imaginary part of a complex number with -1, while FFT shifts
are done with common swap procedure using temporary buffer.
In the merged kernel, two temporary buffers are used instead of
one, and the conjugation is performed while loading elements
into the buffers. This version is called version G6. Table II
shows how the two kernels merge into one.

This optimization strategy corresponds with performance
consideration G (instruction-level parallelism).

TABLE II. TWO KERNELS IN G5 MERGED INTO ONE IN G6.

G5 G6

kernel conjugate:
ini,j.imag=in;, j.imag*-1
end kernel.

kernel conjshift:
tmpl = in; j
tmp2 = ini,jm/z
tmpl.imag = tmpl.imag*-1
tmp2.imag = tmp2.imag*-1
ini,j = tmp2
ini,jm/z = tmpl

end kernel.

kernel shift:
temp = inj
ini,j = iny, jens2
ini, jsn2 = temp
end kernel.

C. Shared memory usage

Copying parts of data into shared memory may give better
performance if said data are accessed multiple times within a
kernel. This is proven in the optimization to the reduction
kernels version G3. The modifications in G2 and G3 are then
merged into G4 to give even better performance.

In naive reduction implementations, matrix elements are
copied to the output buffer and the procedures for reduction is
done on the output buffer. In the modified version, matrix
elements are copied to shared memory and the procedures are
performed on the shared memory buffer. Finally, the reduction
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result is copied to the output buffer. Table III shows the
principle differences of reduction kernels in versions G1 to G4.

TABLE III. REDUCTIONS IN VERSIONS G1, G2, G3, AND G4.

Gl G2

outi,j=ini,j
for s=[..):
outyi,j += outy, j«s

outi,jzini,j
outi,j+1=ini,3+1
for s=[..):
outy,j += outy, j+s
outi,j+1 += OUti,j+1+s

G3 G4

shared;=in;;
for s=[..):

shared; += sharedj.s
out; e = sharede

sharedo, j=inje, j
sharedy, j=inj4q, 5
for s=[..):
sharedo,; += sharedo, js
shared;,; += sharedy, jis
outi.g,e = sharedy,e
outi.i,e = shareds,e

Another form of reduction kernel in this implementation is
the in-place reduction kernel, where the reduction result of each
row is placed in the same memory buffer as the input,
specifically on the first column of each row. In this version
there is no copying to output buffer in the naive
implementation and therefore no memory latency cost, but in
the revised version memory latency is introduced in copying
input to shared memory. There is still positive performance
gain, though, because subsequent accesses to the shared
memory produces lower latency.

D. Constant memory usage

Weather radar signal processing in this paper involves the
use of two constant coefficients in the form of a matrix and a
vector. Such coefficients can potentially be stored in constant
memory to decrease latency, but since constant memory
capacity is very limited, only the second coefficients are stored
in there.

The Hamming window coefficient consists of 1024x512
floating point elements, which translates to 2 megabytes of
data, while the constant memory of tested device is limited to
64 kilobytes. The moving average coefficient, on the other
hand, consists of 512 complex numbers, which are represented
as a pair of floats. This translates to 4 kilobytes of data, which
still fit in the constant memory.

This optimization is called version GS5.

E. Data prefetching with CUDA streams

In this optimization, data for the next sector is copied to the
device memory while processing data for the current sector,
resulting in version G7. The overlap of memory copy and data
processing is achieved using CUDA streams.

To achieve this, the main program loop is modified as
follow: where previously the loop body begins with loading
sector data followed by data processing and finally copying the
result back to the host memory, the new main program starts
with loading the first sector before the main loop, with the main
loop body consisting of processing current sector data followed

by loading next sector data and finally copying the result of
current sector to the host memory. This difference is shown in
pseudocode form in Table I'V.

TABLE IV. COMPARISON OF MAIN PROGRAM LOGIC IN PREVIOUS VERSIONS
AND THE STREAMED VERSION

Non-streamed version Streamed version

for i=[0, NUMSECTORS):
load sector 1i;
copy sector i to dmem; |copy sector O to dmem on
process sector 1i; stream s;
copy result of sector i|for i=[0, NUMSECTORS):
to hmem; process sector i on
end for. stream s;
if I<NUMSECTORS-1:
load sector i+1;
copy sector i+l to dmem
on stream (s+1) mod
NUMSTREAMS ;
end if;
copy result of sector i
to hmem on stream s;
s = (s+1) mod NUMSTREAMS;
end for.

s = 0;
load sector 0;

Experiments were done using two to sixteen streams. In the
following sections, versions coded G7-x denotes that the G7
version is run with x number of CUDA threads.

This optimization strategy corresponds with performance
consideration D (data prefetching).

VII. UNUSED OPTIMIZATION STRATEGIES

As can be seen from the previous section, not all
performance considerations are implemented in the final,
optimized versions. This is because experiments with some
optimization strategies does not yield better performance, or
the strategy is not applicable for the process concerned in this
paper. This section discusses such optimization strategies.

Performance consideration A, warp partitioning, is not
applicable for this research since there are no conditionals in
the algorithm.

For performance consideration B, memory coalescing, the
naive base implementation is already coalesced according to
the characteristics of the process. The algorithm includes both
row-wise and column-wise processes, but the latter is only
done once for each matrix. A such, arranging the matrix
column-first does not yield better performance than row-first as
in the base implementation.

While optimization strategies shared memory usage and
constant memory usage seem related to performance
consideration C (dynamic partitioning of shared memory
resource), it is actually not applicable in this research because
the data size is always constant, i.e. 1024x512 for each matrix,
and therefore there are no room for dynamic partitioning. An
optimal partitioning scheme for one input sample is applicable
for all input samples.

Finally, in Hamming window calculation, experiments were
done to apply performance consideration E, instruction mix, in
which the kernel applies Hamming coefficient to several matrix
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cells. This experiment yields worse performance compared to
the naive version of Hamming window calculation.

VIII.RESULTS

A. Correctness

The calculation result of the parallel implementation is
found to be correct by using the formula of L2 relative error,
compared to the calculation result of baseline serial
implementation. Calculated error of one sector is 1.99995x10°°,
which is considered good enough.

B. Performance analysis

o 15426.4
co I 6133.49
¢t [ 607902
c2 [ 60708
c3 [ 592025
c+ I 55003
cs I 550135
co [N ;6.1
c7-2 | 36239
c7-3 [ 35701

Fig. 2. Execution time of various implementation versions, in miliseconds.

Performance comparison of CPU implementation, dubbed
version CO, and the various GPU implementations is shown in
Fig. 2, while speedups as calculated by previous execution time
divided by optimized execution time, is shown in Table V.
Performance measurements are taken on Intel® Core™ i5-
6200U (2 cores, 4 threads) machine with 4 gigabytes of RAM
and NVIDIA® GeForce® 930M graphics card.

TABLE V. SPEEDUP OF VARIOUS IMPLEMENTATION VERSIONS

Version Remarks Immediate  Cumulative

speedup speedup
GO Naive parallel implementation 2.52 2.52
Gl Block size adjustment 1.01 2.54
G2 Instruction-level parallelism 1.01 2.55
G3 Shared memory usage 1.02 2.61
G4 Combination of G2 and G3 1.00 2.61
G5 Constant memory usage 1.00 2.62
G6 Kernel merge 1.04 2.72
G7-2 Data prefetching with two streams 1.56 4.26
G7-3 Data prefetching with three streams 1.01 432

Below are several remarks about performance gains
achieved by implementing optimization strategies discussed
before:

1. Block size adjustments work because previously there were
kernels that use only one or two threads per block. This is

highly inefficient and thus optimized by instead having one
or two blocks with hundreds of threads.

2. Using loop wunrolling to achieve instruction-level
parallelism in reduction kernels work but only to a small
degree. This is most likely because data is not coalesced for
this part of the processing but restructuring data to achieve
coalescing in this part may impact performance in other
parts.

et

Utilization of shared memory in reduction kernels give
performance gain even when the cost of copying data to the
shared memory is accounted for. This is because reducing a
large number of elements such as in this case requires
multiple accesses to the same element in one kernel, and
each of those accesses require less time when stored in
shared memory.

4. Utilization of device constant memory does not yield
performance gain because each element within the constant
memory slot is accessed only once per kernel.

5. Overlapping data transfers between host and device
memory with computations gives significant performance
gain by reducing GPU idle time (Fig. 3). Data loading
which was previously started only after the previous sector
has been processed can now be done parallel to it. The
performance gain stops at three streams, though, because
overhead in CPU-side data loading eclipses streaming
advantages.

IX. CONCLUSIONS

From the experiments, it can be concluded that GPU is
indeed fitting for processing dual polarization FMCW weather
radar signal, since signal data are represented as matrices with
dimensions always in the form 2", and processes include many
highly parallel algorithms and algorithms with known
optimized parallel implementations.

Another drawn conclusion is that most optimization
strategies applied to the parallel implementations in this
research only give minor performance boosts with exception of
the utilization of multiple CUDA streams for data prefetching.
This strategy gives 1.72 speedup compared to naive parallel
implementation, or 4.32 speedup compared to serial
implementation.

Further research is necessary to implement other parts of
weather radar signal processing that is not covered in this
paper, such as the calculation of linear depolarization ratio and
mean Doppler velocity. Comparing parallel implementations in
GPU environment with parallel implementations in CPU
environment may also worth researching.

GPU utilization (ms)
G6 996.54 2144.85 030 2519,42
G7-3 953.6 2142.89 041 477,11
W MemCpy(HtoD) ® Compute M MemCpy(DtoH) M Idle

Fig. 3. Execution time breakdown of G6 and G7 with three CUDA streams,
in miliseconds.
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