
Abstract Syntax Tree (AST) and Control Flow
Graph (CFG) Construction of Notasi Algoritmik

Irfan Sofyana Putra
School of Electrical Engineering and

Informatics, Institut Teknologi Bandung
Bandung, Indonesia

Email: 13517078@std.stei.itb.ac.id

Satrio Adi Rukmono
School of Electrical Engineering and

Informatics, Institut Teknologi Bandung
Bandung, Indonesia
Email: sar@itb.ac.id

Riza Satria Perdana
School of Electrical Engineering and

Informatics, Institut Teknologi Bandung
Bandung, Indonesia

Email: riza@informatika.org

Abstract—Abstract Syntax Tree (AST) and Control Flow
Graph (CFG) are program code representations widely used for
static analysis. One of the uses of static analysis is for automated
grading programming exercises. Notasi Algoritmik is a notation
used in our institution for learning programming, including those
related to the evaluation of programming exercises. However,
the current condition in our institution is that the grading
process of programming exercises using Notasi Algoritmik is
still done manually, which has an error-prone risk. Before our
work, there was no research about how AST and CFG are
constructed from Notasi Algoritmik, even though it is possible to
develop an automated grader to solve manual assessment in the
evaluation of programming learning. Therefore, in this paper,
research was conducted to construct the AST and CFG from
Notasi Algoritmik, to make developing an automated grader for
programming assignments that uses Notasi Algoritmik possible
in the future. The first thing that we need to do is to define the
grammar of Notasi Algoritmik. After the grammar is defined,
we need to do lexical and syntax analysis to construct the AST.
AST itself will be used to represent the Notasi Algoritmik in
abstract form to construct the CFG. An algorithm created by Tim
Teitelbaum (2008) alongside some modifications can be used as
a reference to construct the CFG. The research shows that AST
is well constructed after two-phase lexical analysis and syntax
analysis. Meanwhile, CFG can be constructed using the recursive
technique that traverses nodes in the AST. With the result of this
research, the development of an automated grader for Notasi
Algoritmik can be tried in the future.

Index Terms—Notasi Algoritmik, Lexical Analysis, Syntax
Analysis, Abstract Syntax Tree (AST), Control Flow Graph
(CFG)

I. INTRODUCTION

Learning programming is an interactive process between
learners and educators to learn how to read, write, and test
a computer program. Usually, an educator use assignments as
a part of the evaluation in the learning process. Our institution
adopts a specific notation used in many courses for learning
programming. The notation is called Notasi Algoritmik (lit.
Algorithmic Notation). This notation is used as a medium
of communication between lecturers and students. Notasi
Algoritmik is also used in some assignment activities like
quizzes, mid-term tests, and final tests.

The assessment process of assignments that used Notasi
Algoritmik is carried out manually by lecturers. The process
that is still done manually will become a problem if the number
of students increases. Therefore, the lecturers need to work

Fig. 1. High Level Overview of Auto Grader Based on CFG

harder to do an assessment, but at the same time, it is also
error-prone, and in the worst case, has a reduced level of
objectivity.

There are already many kinds of research and projects to
solve a similar problem. One of the approaches is to develop
an automatic grader based on static analysis. The usage of
static analysis gives two advantages: (1) it assists educators
in assessing a large number of assignments; (2) static analysis
can provide feedback and instructions for learners from an
expected solution without providing a complete solution to
the problem at hand.

Some methods can be used to develop automated graders
based on static analysis. One of them is using the graph
analysis technique. This method will convert the source code
into a CFG then the grader analyses the CFG and produces the
score. Figure 1 shows the high-level overview of the automatic
grader using CFG [1]. Unfortunately, those methods could
not be directly implemented to Notasi Algoritmik because
the automatic grader needs an intermediate representation of
Notasi Algoritmik. As it stands, no existing method or tool

2021 International Conference on Data and Software Engineering (ICoDSE)

978-1-6654-9453-3/21/.00 ©2021 IEEE



PROGRAM odd_event

KAMUS
n: integer

ALGORITMA
input(n)
if (n mod 2 = 1) then
output("odd")

else
output("even")

Fig. 2. Example of Notasi Algoritmik

can be used to represent it.
Meanwhile, AST and CFG are two representations usually

used in automatic graders based on static analysis. AST is the
abstract representation of the code, and it can be used to derive
some valuable metrics and representations, including CFG [2].
However, the absence of methods and tools that can represent
Notasi Algoritmik led to an intermediate problem to be solved
before developing the automatic grader. This paper explains
how to construct AST and CFG from Notasi Algoritmik so
that automatic grader development that uses Notasi Algoritmik
can be carried out in the future.

II. NOTASI ALGORITMIK

Notasi Algoritmik is a specific standard or notation ap-
plied in our institution for some programming courses like
programming fundamentals and data structure and algorithm
courses. Notasi Algoritmik is adapted from a book called
“Schemas Algorithmiques Fondementaux” created by Scholl
P.C and Peyrin, J.P in 1988. This notation is mainly used
for learning purposes. The notation is required to bridge the
diversity and complexity of programming language to focus
more on algorithm design than coding. Notasi Algoritmik is
used for learning purposes in assignments, quizzes, mid-term
tests, and final tests [3].

For this paper, we use Notasi Algoritmik as defined by the
book Draft Diktat Kuliah Dasar Pemrograman, a textbook for
a programming fundamentals course created by Inggriani Liem
in 2007. In general, we can say that Notasi Algoritmik is not
considered a programming language because it does not have
a compiler. However, in the Diktat, Notasi Algoritmik has a
structure that has many similarities with some programming
languages, notably Pascal and Python. Figure 2 shows an
example of Notasi Algoritmik, and from there, we can see that
Notasi Algoritmik has similarities with some programming
languages.

Notasi Algoritmik has core components like common pro-
gramming languages. In general, Notasi Algoritmik consists of
the “KAMUS” part, where we declare elements such as vari-
able, type, and function. There is also the “ALGORITMA” part
which is consists of statements that comprise an algorithm.
Statements recognised in Notasi Algoritmik include simple
statements, branching statements, loop statements, and sub-
programs (function and procedure). In Notasi Algoritmik, the

Fig. 3. High level process of AST Construction for Notasi Algoritmik

recursive concept is also recognised. Some statements like
branching statements and loop statements can be achieved
in several ways. For example, the “if” statement and the
“depend-on” statement are two ways to declare branching
statements in Notasi Algoritmik. As shown in Figure 2, Notasi
Algoritmik also uses the indentation concept to convey the
program structure similar to Python Programming Language.

As previously mentioned, Notasi Algoritmik does not have
a compiler. It means that right now, Notasi Algoritmik does
not have a formal syntax, although some rules are defined
in Diktat. This situation requires us to define a standardised
syntax of Notasi Algoritmik, or formally, we need to define
the context-free grammar of Notasi Algoritmik. This is one of
the challenges that we faced to construct AST and CFG of No-
tasi Algoritmik. Context-free Grammar is likewise commonly
abbreviated as CFG, like the control flow graph, therefore to
avoid confusion, we will use the term “grammar” to replace
“context-free grammar” in the rest of our paper.

To define the grammar of Notasi Algoritmik, first, we
need to define what components from Notasi Algoritmik that
we will cover. In this paper, we use components related to
simple statements (assignment and mathematics statement), all
statements related to branching statements, all statements re-
lated to loop statements, subprogram (procedure and function),
subprogram calling, and recursive statements. We are also
defining how to declare constants, data types, and variables.
After the components that will be used are defined, for each
component, we need to define some possible rules of how we
accept the component; this process is also known as finding
the production rule of the grammar. We also need to make
the rule as small as possible. This is very challenging, and
sometimes the resulting grammar is ambiguous. In that case,
we need to refine the grammar until it is unambiguous.

III. AST CONSTRUCTION FOR NOTASI ALGORITMIK

The high-level process of AST construction for Notasi
Algoritmik can be seen in Figure 3. Each process will be
explained in two following subsections.

A. Lexical Analysis

The first process that needs to be conducted to construct
AST is lexical analysis. Lexical analysis is the first phase of
the compilation process of a source code. This process involves
scanning the source code and breaking it down into a set of
tokens. A token is the smallest unit in a language that has
a meaningful value. In a programming language, tokens can
be grouped into symbols, reserved words, literal values, and
identifiers [4].

2021 International Conference on Data and Software Engineering (ICoDSE)



Before the lexical analysis can be carried out, the tokens
used in Notasi Algoritmik need to be defined. We divide the to-
kens into four categories: (1) symbol or character; (2) reserved
word; (3) literal value; and (4) identifier. These tokens can be
obtained by looking at and analysing some essential aspects in
Notasi Algoritmik. For example, in Notasi Algoritmik, a block
called “ALGORITMA” contains a collection of statements
representing the algorithm. Hence, the word “ALGORITMA”
is defined as a token. The other way to find the tokens is
by looking at the statements available in Notasi Algoritmik.
For example, in Notasi Algoritmik, there is a “depend-on”
statement. Therefore, the word “depend” and “on” needs to
be defined as a token.

In Notasi Algoritmik, there are some non-ASCII characters
used. For example, the character “←” is used in an assignment
statement. To handle those cases, the character encoding used
in the lexical analysis is UTF-8. One of the interesting facts
in Notasi Algoritmik is the usage of indentation as in the
Python programming language. This becomes a challenge in
the lexical analysis process. We separate indentations into two
tokens representing the algorithm block’s start and end to solve
this problem. Again, this is adapted from other programming
languages. For examples in Pascal, the reserved word ”begin”
and ”end” is used.

As explained before, the lexical analysis process is divided
into two phases to classify the indentation into two tokens.
The first phase recognises all tokens in Notasi Algoritmik,
where an indentation is simply a whitespace token. Then, in
the second phase, all those whitespace tokens will be classified
into two types of tokens called “INDENT” (similar to “begin”
in Pascal) and “DEDENT” (similar to “end” in pascal). The
main idea to classify the whitespace token is to keep track of
the state of indentation. The state itself stores the number of
spaces of the whitespace token. When the whitespace token is
read, there are three possible meanings. The first case is when
the number of spaces in the token is greater than the last state;
then, the read token is an “INDENT” token. The second case
is when the number of spaces in the read token equals the last
state. In such a case, the token is ignored because it is in the
same indentation level as the last state. The third case is when
the number of spaces in the read token is less than the last
state, then the token is considered a “DEDENT” token, and
the state must be adjusted to the number of spaces being read
so that there may be an addition of a “DEDENT” token in the
final token.

B. Syntax Analysis

Syntax analysis is an advanced lexical analysis phase in
compiler development to check the syntax and build a data
structure (commonly referred to as a parse tree, abstract syntax
tree, or other hierarchical structure) implicit in the input token
[5]. After a set of tokens is retrieved from the lexical analysis,
the tokens are checked whether the input structure of the
Notasi Algoritmik meets the specified grammar or not. If it
follows the grammar, then this process produces an AST.

As we already have the grammar from the previous sec-
tion, the next step that needs to be done is to design how
the AST will be constructed. AST design is done for each
production rule that exists in the grammar. At this stage,
terminal symbols that exist in the production rules but have
no significant meaning will be ignored and not included in the
AST representation. Each AST constructed from a production
rule has one root node and zero or more nodes as child
nodes. If the right-hand side of the production rule contains
only terminal symbols, then the root node stores information
for those terminal symbols. However, if there is at least one
non-terminal symbol, then the root node of the AST stores
information in the form of a string representing the identity
of the grammar rule. In contrast, its child nodes represent the
AST of the non-terminal symbol of the production rule.

IV. CFG CONSTRUCTION FOR NOTASI ALGORITMIK

A control-flow graph (CFG) is a directed graph in which
each node represents a basic block, and each edge represents
the flow of control between basic blocks. A basic block is
a sequence of consecutive statements in which the flow of
control enters at the beginning and leaves at the end without
halt or possibility of branching except at the end. CFG is
primarily used in static analysis and compiler applications, as
they can accurately represent the flow inside a program unit
[6].

Tim Teitelbaum created an algorithm in 2008 to construct
CFGs. The algorithm uses the recursive technique by decom-
posing a statement into a tinier statement until it cannot be
decomposed. The resulting CFG is the result of combining
short statements that constitute it with a specific rule. Mean-
while, statements that cannot be decomposed have a CFG
representation with one node with the same entry and exit
blocks, namely the node itself. With this algorithm, AST can
be used as a data structure that stores the program input [7].

Every statement in Notasi Algoritmik has a different CFG
representation according to the control flow it represents.
Therefore, one of the CFG construction tasks is to think and
design the graph representation of each statement in Notasi
Algoritmik. One of the challenges in CFG construction is
handling cases of subprogram calls, in which the AST of
each subprogram needs to be saved. Meanwhile, calling a
subprogram in Notasi Algoritmik has two possibilities: (1)
function is called in an expression. Therefore, whenever the
CFG of a statement is constructed, there is a process to check
whether there is a function call on any expression contained
in that statement. If there is a function call, then the CFG
node of the expression is connected to the CFG of the called
function. (2) procedure is called in a statement. Therefore,
there is a check whether a statement is a procedure call or
not. If a statement is a procedure call, then the CFG node
of that statement will be connected to the CFG of the called
procedure.

Another challenge in CFG construction is handling recursive
cases. For that, the first node of the CFG constructed by a
subprogram must be saved. Then, every time the CFG of a

2021 International Conference on Data and Software Engineering (ICoDSE)



PROGRAM DETERMINE_NUMBER

KAMUS
x : integer

ALGORITMA
input(x)
if (x > 0) then
output(x, " is positive number")

else
if (x < 0) then
output(x, " is negative number")

else
output(x, " is zero")

Fig. 4. Notasi Algoritmik Input for the First Example

subprogram is constructed, there is a first check whether the
CFG of the subprogram has been constructed before. If it has
previously been constructed, the expression or statement that
calls it will be connected to the previously saved node. Mean-
while, if it has never been constructed, the CFG construction
process from the subprogram will be carried out, and the first
node of the constructed CFG will be saved.

V. EXAMPLES

This section will explain some examples of how to generate
the AST and CFG from Notasi Algoritmik. Two examples will
be used.

A. First Example

The input for the first example can be seen in Figure 4. This
example examines how the if-else statement in Notasi Algo-
ritmik is represented in the AST and CFG. The constructed
AST and CFG can be seen in Figures 5 and 6, respectively.

As shown in Figure 5, the constructed AST can show each
part from the given input properly. The constructed CFG also
shows the algorithm part correctly. That can be seen from the
fact that there is an edge from the “if (x > 0)” node into the
“output(x, ”is positive number”)” node that represents the true
condition of the statement. Next, there is also edge from the
“if (x > 0)” node into the “if (x < 0)” node that represents
the false condition of the statement. From the given input, we
can see that there is also an if-else statement. Therefore, there
is an edge from the “if (x < 0)” node into the “output(x, ” is
negative number”)” node and the “output(x, ” is zero”)” node
that represents true and false conditions respectively.

One interesting fact about Notasi Algoritmik, especially
about the CFG representation of the “if-else” statement, is that
there are always two children from the conditional node. Those
two represent the true and false conditions. Therefore, we can-
not have a chained if-else statement like the “if...elif...elif...”
statement in Python, which can have more than two children
from the conditional node.

B. Second Example

The input for the second example can be seen in Figure
7. This example examines how some of the loop statements

in Notasi Algoritmik (repeat times and while statement) is
represented in the AST and CFG. The constructed AST and
CFG can be seen in Figures 8 and 9, respectively.

As shown in Figure 8, the constructed AST can properly
show each part that exists in the given input. We can see
each element declaration and the statements from the given
input in the constructed AST. Meanwhile, the CFG is also
appropriately constructed. We can see that all the statements
from the given input are available in the CFG.

In this example, we can see there are two loop statements.
The first statement is a “repeat-n-times” statement, and the
second is a “while” statement. The representation of these
two loop statements in the CFG is correct. This is proven
for “repeat-n-times” statement because there is an edge from
the node into the “j < − 1” node that represents the entry
point of the loop, and there is an edge from the “i < − i+1”
node back into “repeat” node that represents the loop. For the
“while” statement, the representation in the CFG is correct
proven by there is an edge from the “while (j <= i)” node into
the “sum square < − sum square+ i” node that represent
the entry point of the loop and there is an edge from the “j
< − j + 1” node going back into “while” node.

VI. DISCUSSION

This research shows that AST can be constructed after going
through lexical and syntax analyses. Earlier, several things
had to be defined, such as tokens and the grammar of Notasi
Algoritmik. The tokens used in the final project were obtained
from studies on several aspects, such as the structure of Notasi
Algoritmik and the statements contained in Notasi Algoritmik.
The lexical analysis process in this research consists of two
stages to overcome the problem caused by indentations in
Notasi Algoritmik.

In this research, we also define the grammar of Notasi
Algoritmik. The grammar of Notasi Algoritmik is quite similar
to the Pascal language because there are quite a lot of syntactic
similarities between the two. Therefore, when we want to
define the grammar for a language, it is helpful to look for
language references that are pretty similar to the language
being created. The grammar of the reference language can
be used as a reference to build the grammar of the language
that is being created. Nevertheless, it is still a challenge to
define the grammar of Notasi Algoritmik because we still
need additional rules or modify the existing rules from a
programming language. For example, in Notasi Algoritmik, we
need to define the grammar to handle the indentation, which
does not exist in Pascal.

Meanwhile, CFG can be constructed using a recursive
technique by performing a traversal process on the nodes in
the CFG, as suggested by Teitelbaum(2008). However, the
algorithm does not explain handling the CFG construction case
with a subprogram call and a recursive case. This becomes
one of the challenges in the research to modify the algorithm
so that subprogram calling cases and recursive cases can be
handled. Furthermore, when implementing CFG generation, it
was not easy to find literature studies that discussed how CFG

2021 International Conference on Data and Software Engineering (ICoDSE)



Fig. 5. The Constructed AST for the First Example

Fig. 6. The Constructed CFG for the First Example

generation was carried out. Therefore, the author also hopes
that this research can be helpful for future research or projects
requiring algorithms to generate CFG.

The following improvements can be made from this re-
search: i) add parts of Notasi Algoritmik that we left undefined
in our research to construct the AST and CFG for statements
such as sequential file processing, ii) perform semantic anal-
ysis after the syntax analysis process to detect semantic error
from the Notasi Algoritmik, and iii) include additional helpful
information within the CFG node, such as the line number of

PROGRAM SUM_SQUARE
{Compute 1ˆ2 + 2ˆ2 + ... + nˆ2}

KAMUS
sum_square: integer
n, i, j: integer

ALGORITMA
input(n)
sum_square <- 0
i <- 1
repeat n times
j <- 1
while (j <= i) do

sum_square <- sum_square + i
j <- j + 1

i <- i + 1
output(sum_square)

Fig. 7. Notasi Algoritmik Input for the Second Example

the statement.
The general strategies to construct the AST and CFG pro-

vided in this research also can be tried in other programming
languages or even pseudocode as long as we have the rule or
the grammar of the language. However, in this research, we
use Notasi Algoritmik because it is used in our institution, and
we have a guidebook on how to use it. Other than that, we
use Notasi Algoritmik to ensure that the result of this research

2021 International Conference on Data and Software Engineering (ICoDSE)



Fig. 8. The Constructed AST for the Second Example

Fig. 9. The Constructed CFG for the Second Example

can be used as a baseline to develop an automated grader
for programming exercises that used Notasi Algoritmik in our
institution.

VII. CONCLUSION

From this research, we can conclude that the AST of Notasi
Algoritmik can be constructed through two stages of lexical

analysis and syntax analysis. The first stage of the lexical
analysis process reads the indent as a whitespace token. Then
in the second stage, the whitespace token is classified as an
”INDENT” token if it is an indent that represents the beginning
of a block or a ”DEDENT” token if it is an indent that
represents the end of a block. In this research, the grammar
of Notasi Algoritmik is also defined, which has quite many
similarities with the grammar of the Pascal programming
language.

Meanwhile, the CFG of Notasi Algoritmik can be con-
structed with Teitelbaum’s algorithm and with some modifi-
cations to handle the subprogram and recursive calling. This
technique performs the traversal process on the nodes in the
AST that has been constructed before. The results obtained
from this research can be a foundation to start automatic grader
development that uses Notasi Algoritmik.

REFERENCES

[1] Sendjaja, Kevin. (2021). Evaluasi Tugas Pemrograman dengan Control
Flow Graph. Skripsi. Bandung: Institut Teknologi Bandung.

[2] Fischer, G., lusiardi, J., & Gudenberg, J. W. (2007). Abstract Syntax
Trees and their Role in Model Driven Software. International Conference
on Software Engineering Advances (ICSEA 2007). Cap Esterel: IEEE

[3] Liem, I. (2007). Draft Diktat Kuliah Dasar Pemrograman (Bagian
Pemrograman Prosedural). Bandung: Kelompok Keahlian Rekayasa
Perangkat Lunak dan Data STEI ITB.

[4] Farhanaaz, & V, S. (2016). An exploration on lexical analysis. Inter-
national Conference on Electrical, Electronics, and Optimisation Tech-
niques (ICEEOT). Chennai: IEEE.

[5] Mulik, S., Shinde, S., & Kapase, S. (2011). Comparison of Parsing
Techniques For Formal Languages. International Journal on Computer
Science and Engineering (IJCSE).

[6] Harrold, M. J., Rothermel, G., & Orso, A. (2003). Representation and
analysis of software. Symposium on Night-and Shiftwork

[7] Teitelbaum, T. (2008). Introduction to Compilers. New York: Cornell
University.

2021 International Conference on Data and Software Engineering (ICoDSE)


