
Evaluating Control-Flow Graph Similarity for
Grading Programming Exercises

Kevin Sendjaja
School of Electrical Engineering and

Informatics, Institut Teknologi Bandung
Bandung, Indonesia

Email: 13517023@std.stei.itb.ac.id

Satrio Adi Rukmono
School of Electrical Engineering and

Informatics, Institut Teknologi Bandung
Bandung, Indonesia
Email: sar@itb.ac.id

Riza Satria Perdana
School of Electrical Engineering and

Informatics, Institut Teknologi Bandung
Bandung, Indonesia

Email: riza@informatika.org

Abstract—Programming has become a fundamental skill in the
current digital era. A formal programming course relies on an
autograder to score student works. However, the usual black-box
method only compares the output instead of adequately exam-
ining the code structure. As such, another method is required
to measure the structure of the student submission code to give
fairer scores. In this paper, an experiment is conducted using a
control-flow graph (CFG) comparison algorithm to measure the
similarity between student submission code and reference code
from the instructor, followed by an analysis of the results obtained
from the experiment. The comparison was made using the Hu
Algorithm [1], based on previous CFG similarity measurements
presented by Chan and Collberg [2]. Through the experiment
and analysis process, it is concluded that the CFG comparison
method implemented in this research is better applied to boost
students who got low scores due to minor mistakes rather than be
applied to the entire student submissions as the primary scoring
algorithm.

Index Terms—control-flow graph, cost matrix, white-box

I. INTRODUCTION

In this digital era, programming skill is indispensable in
many fields. People from all kinds of backgrounds are ex-
pected to keep up with the current technological developments.
Today, anyone can hone their programming skills, either
through formal education or by self-studying.

Most programming classes utilise an automated grading
system using the black-box method, which compares the
output from submitted code when given a particular input with
the expected output. This method has already proven to be
quite effective to grade programming assessments. However, it
is not entirely uncommon that a minor mistake, such as writing
the output in a slightly different format, causes a student to
receive a bad score even when the logic of the program is
mostly correct. Thus, while black-box autograders are suitable
for competitions, where coders are already expected to create
well-written codes, they are not entirely suitable for the
learning environment in which we want to assess the learner’s
skills. This situation pushes the need for an additional grading
method to give a fairer score for each student’s work.

This paper aims to analyse the application of static analy-
sis using control-flow graphs (CFG) to grade programming
assessments. Our grading process compares the CFG from
the student’s submission with the CFG from the instructor’s
reference code. It uses a graph comparison algorithm to

measure the similarity. In particular, we try to find out how this
automated grader performs compared to manual evaluation and
the traditional black-box grader with randomised test cases.

The rest of this paper is organised as follows. In Section II,
we present the foundational bases to our work. Then, we
propose our automated grading system in Section III. We
explain our experiment next in Section IV and discuss the
result in Section V. Finally, we draw our conclusion and
suggest future work in Section VI.

II. FOUNDATIONAL BASES

A. Control-Flow Graph

Control flow analysis refers to the technique of analysing
the control flow of a program [3]. A control flow can be
described as the execution sequence of the instructions within
the program. An instruction can be defined as lines of code
that execute a particular task or function calls. This term was
used by Francis E. Allen in his journal back in 1970 [4]. The
relations between the control flow can be drawn in the form
of a directed graph, referred to as Control-Flow Graph (CFG).

A node represents a basic block within a CFG, i.e., a series
of instructions with exactly one entry point and one exit point.
Meanwhile, an edge represents the path that is passed by the
control flow. An example of a CFG can be seen in Fig 1.

CFGs have been used for various use cases. For example,
Harrold et al. [5] used this approach as an alternative for
representing and analyzing software. Kruegel et al. [6] applied
the same technique to detect network worms. Vujosevic-
Janicic et al. [7] also used this approach to analyze assessments
submissions.

B. Control Flow Graph Similarity Algorithms

There is no “standard” metric for measuring the similarity
between two CFGs. As such, many researchers defined their
algorithms over the years. Chan and Collberg [2] categorized
and compared some of the algorithms as follows.

a) k-subgraph mining: This algorithm was presented by
Kruegel et al. [6], and its primary focus is to measure the
similarity of CFGs based on the similarity of their subgraphs.
k-subgraph refers to a subgraph of each node within the graph
which spanned from the current root node such that the out-
degree of each node ≤ 2, and the in-degree ≤ 1. Each of these

2021 International Conference on Data and Software Engineering (ICoDSE)

978-1-6654-9453-3/21/.00 ©2021 IEEE

Fig. 1: Example of a CFG

k-subgraphs will then be plotted into a unique integer, which
serves as its’ fingerprint. These fingerprints are later used to
determine whether two graphs are similar or not.

b) Edit distance/cost-based algorithm: Hu et al. [1] pro-
posed an algorithm to measure graph similarity by determining
the minimum number of transformations required to transform
a graph into another. The algorithm was first designed to match
software to currently known malware. A cost matrix is used to
calculate the total cost needed. Once the cost matrix is defined,
the minimum cost is found using the Hungarian Algorithm.
The result is the total cost or edit distance between the two
graphs, which could be derived into a similarity score.

c) Neighbor matching: Vujosevic-Janicic et al. [7] de-
signed this algorithm for grading student assessments. The
basic idea is to create a similarity matrix between two CFGs
through an iterative process. The values are calculated through
the similarities between neighbouring nodes. Once the iteration
process has stopped, the similarity between the two graphs can
be obtained using optimal matching on the similarity matrix.

C. Autograder

Autograder refers to software used to automatically execute
submitted programs and give a proper grading for each sub-
mission. The main reason for its usage is due to a large number
of students and a large number of assignments, which would
cost a lot of time and energy if the lecturer has to grade each
one manually. The grading process of an autograder can be
seen in Fig 2

A programming instructor must provide a series of test cases
used when the submitted code is executed. A grader will first
compile the submitted code to make sure that the program
can be executed. Then, the inputs from the test cases will be
supplied to the program, and the output will be matched with
the expected output from the test cases to get the final grade.

Fig. 2: Grading process using the black-box method
Source: (Danutama, K. Liem, I, 2014) [8]

Such a method is called the black-box method, where grades
are determined by comparing program outputs.

In competitive programming, grading is done only by
whether the submission can generate the correct outputs, given
specific inputs. However, when it comes to a learning process,
students are not only expected to submit the correct code. They
are also expected to pay attention to code readability, follow
coding conventions, and other aspects that are related to taught
materials. This kind of grading is referred to as white-box
grading, where the process involves analyzing the contents of
the code. White-box methods are relatively more challenging
than black-box due to the extra efforts required to analyze the
entire code.

III. PROPOSED SOLUTION

A. Solution Design

The proposed solution involves comparing the difference
between the CFG of the student’s submission to the CFG
of the reference code given by the lecturer. This approach
would allow the program to analyse the correctness of the
code based on the similarity of the code structure against
the expected code, providing a more thorough assessment
compared to the usual black box method. First, an assessment
tool is implemented, utilising CFG comparison algorithms on
submission codes and reference codes. Some cases where the
white-box and black-box scores have significant differences
will then be graded manually by an expert. The expected
result is that the white-box score from the CFG comparison
algorithm can be as similar as possible to the scores from
manual grading.

Student Submission

Reference Code

CFG Converter

CFG Converter

Generate CFG Collapse CFG

Generate CFG Collapse CFG

Submission CFG

Reference CFG

Build Cost Matrix Generate Whitebox Score

CFG Comparator

Whitebox Score

Fig. 3: Diagram of the proposed grading system

Fig. 3 describes the design of the proposed system. The
system will run several submission codes at once, and the
scores will be saved in an output file for evaluation. It is
possible to use more than one reference code for each problem

2021 International Conference on Data and Software Engineering (ICoDSE)

since there may be more than one correct program for a
problem. When more than one reference code is provided,
each submission will be compared to every reference code,
with the highest score regarded as the final grade.

B. CFG Converter

The CFG Converter module converts both submission and
reference codes into their CFG representations, later used in
the grading process. Before grading, both CFGs go through the
“collapse” process, which combines all nodes located within
a single linear flow. The steps of the collapse process are as
follows.

1) Create a list that contains all nodes that will be removed
by the end of the process.

2) Iterate over each node within the graph.
3) When the current node only has one outgoing edge and

is not within the list, mark the node as start node.
4) If the direct successor only has one incoming edge and

one outgoing edge, the direct successor will become the
current node in the next iteration. The current node is
then added to the list, and the content of the current
node will be added to the start node.

5) Step 4 is repeated until a node that does not satisfy
the conditions is found. The current node will then be
marked as a stop node. When the immediate successor
of the current node has no outgoing edge, that immediate
successor will be marked as a stop node.

6) If the start node is different from the stop node, add an
edge from the start node into all nodes with an incoming
edge from the stop node.

7) Repeat steps 2 to 6 until the iteration has covered all
nodes in the graph.

8) For each node in the list, remove all edges connected to
those nodes from the graph.

9) Remove all nodes in the list from the graph.

C. CFG Comparator

The CFG Comparator module compares the CFG repre-
sentations and generates the final grade. A score between 0
to 100 represents the grade. We chose to implement the Hu
algorithm [1] to compare the graphs, considering its good
accuracy and execution time based on the research conducted
by Chan and Collberg [2].

The graph representations will be used to create the cost
matrix. The process of creating the cost matrix are as follows:

1) For graphs G1 and G2, with V1 and V2 are set of nodes
for each graph, create a zero matrix with (|V1| + |V2|)
* (|V1| + |V2|) dimension.

2) For the upper left submatrix with |V1| * |V2| dimension,
replace the elements using Equation 1. The cost of
transforming the node contents is not included in this
solution.

aij = relabeling cost+ (|(ON)i|+ |(ON)j |
−2 ∗ |(ON)i ∩ (ON)j |) + (|(ON)i|+ |(ON)j |

−2 ∗ |(ON)i ∩ (ON)j |)
(1)

where ON and IN represent the number of nodes con-
nected by out-going/in-going edges from each respective
nodes.

3) For the upper right and lower left submatrices, with
|V1| * |V1| and |V2| * |V2| dimensions respectively,
replace the elements using Equation 2. When i 6= j,
replace the element with 999.

aij = 1 + |IE(i/j)|+ |OE(i/j)| (2)

where IE and OE represent the number of in-going and
out-going edges from each respective nodes.

Fig. 4: Minimum cost selection using Hungarian Algorithm
Source: (Chan, P. P. F., & Collberg, C., 2014) [2]

Since the cost matrix was initialized with 0, no changes
are required for the lower right submatrix. The total cost will
then be calculated from the cost matrix using the Hungarian
Algorithm, which is also used by the original Hu algorithm [1].
The final grade will then be calculated from the total cost as
the white-box score. Fig. 4. visualizes the application of the
Hungarian Algorithm on the cost matrix.

IV. EXPERIMENT

A. Experiment Setup

The software for the experiment is implemented using
Python version 3.8.5. The conversion process from code into
its CFG representation is done using the Python library pycfg.
The graph representation is saved in the form of AGraph class
from PyGraphViz. This representation then goes through the
collapse process to avoid redundant nodes.

The cost matrix will be created from the collapsed graphs,
both submission and reference graphs. The matrix is con-
structed using the steps from Section III.A. The Python library
Munkres is used for applying the Hungarian Algorithm on the
cost matrix. Finally, the white-box score is obtained through
equation 3. V and E symbolizes the set of nodes and edges
for each graph.

final score =
total cost

|V1|+ |E1|+ |V2|+ |E2|
(3)

A black-box grader is also implemented for comparison
purposes. It runs the submission code using provided test cases
and compares the output with the expected values. This grader
provides a score on a scale of 0 to 100. Should an error is

2021 International Conference on Data and Software Engineering (ICoDSE)

detected, the submission will automatically be given a score
of 0.

B. Test Data

The experiment data are obtained from student submission
codes from a freshman-level programming course. The test
uses two problem sets that were given to every student.
These problem sets are chosen to examine various algorithmic
fundamentals, including conditionals, loops, and functions.
Due to test data limitations, recursive functions are not tested.
4 different reference codes are provided for each problem. The
problem set descriptions are as follows.

1) square: Given an integer n and 2 characters c1 and c2,
construct a string in the shape of a square sized n using
c1 as border and c2 as fill. If n ≤ 0 or c1 = c2, print
an error message instead.

2) count vowels: Given a string, write a function to write
the string into a file, then read the file and write the
number of vowels within the string. The final character
in the string is always a dot (“.”).

C. Experiment Process

The experiment follows the steps described below.

1) The software runs the CFG algorithm on a series of
submission and reference codes. If two or more refer-
ence codes are given, it compares each submission to
each reference, and the highest score is regarded as the
white-box score for the submission.

2) The software also runs the black-box grading for each
submission using provided test cases.

3) The software writes down the results and the identity
for each submission in a spreadsheet. The difference
between white-box and black-box scores are also docu-
mented.

4) Several cases with notable differences between white-
box and black-box scores are analysed manually by an
expert. Due to the limitations in time and resources,
manual grading is only applied to a small portion of
the entire submissions.

A programming lecturer performs the manual grading with-
out seeing the white-box scores before to guarantee objectivity.
The identity for each submission not be shown for the sake of
privacy.

D. Experiment Results

The experiment was conducted on 434 submission codes
for the square problem set and 444 submission codes for
count vowels. The results can be seen from Fig. 5 and Fig.6.

The test result shows 12 submissions with significant dif-
ferences between white-box and black-box scores from each
problem. These submissions are then manually analyzed and
graded. The score comparison can be seen on Table I and
Table II.

Fig. 5: Score comparison visualization for square problem

Fig. 6: Score comparison visualization for count vowels
problem

V. DISCUSSION

From Fig. 5 and Fig. 6, it can be seen that the white-
box score is more evenly spread out compared to the black-
box score, with a relatively higher minimum score as well.
However, Table I and Table II show that the white-box scores
still differ significantly from manual grading in most cases.

Fig. 7: Score comparison visualization for square problem
sorted by difference

2021 International Conference on Data and Software Engineering (ICoDSE)

TABLE I: Score Comparisons for square Problem

Case No Whitescore Blackscore Manual Score
1 89.74 14.00 50.00
2 49.09 100.00 93.75
3 86.84 4.00 87.50
4 59.41 10.00 87.50
5 38.46 8.00 25.00
6 68.18 2.00 25.00
7 94.37 0.00 75.00
8 97.30 10.00 87.50
9 62.77 0.00 62.50
10 47.79 92.00 87.50
11 85.29 8.00 50.00
12 58.59 98.00 93.75

TABLE II: Score Comparisons for count vowels Problem

Case No Whitescore Blackscore Manual Score
1 42.11 100.00 100.00
2 87.50 98.00 87.50
3 94.59 54.00 62.50
4 67.12 24.00 62.50
5 64.00 98.00 75.00
6 100.00 0.00 37.50
7 100.00 12.00 37.50
8 77.78 4.00 62.50
9 42.11 0.00 12.50
10 71.11 2.00 25.00
11 89.19 50.00 62.50
12 92.31 2.00 37.50

When the individual results are sorted by their differences
from the largest to smallest (Fig. 7 and 8), it can be seen that
the white-box and black-box scores display similar variation
patterns in several places. Moreover, the patterns are almost
identical when both scores are high, albeit white-box scores
are relatively lower. This phenomenon indicates that the CFG
comparison algorithm results do not go against the usual black-
box method.

The algorithm generally provides better scores when the
black-box score is very low or 0, which may be concluded
that the white-box score can give a more proper score when
the submitted code contains an error that causes a low black-
box score. However, it should also be noted that when the
black-box score is very high or perfect, the algorithm tends to
give lower grades than expected.

The scores from Table I and Table II are used to produce a
multilinear regression model that can be seen on equation 4.
y signifies the manual score, while x1 and x2 represent white-
box and black-box scores, respectively. The model is not
absolute due to the limitation in the number of data, but it
is enough to estimate that the white-box score has less impact
on the manual score than the black-box score.

y = 30.4356 + 0.2243 ∗ x1 + 0.4569 ∗ x2 (4)

A simulated score is generated through equation 4 to
simulate the grade from manual grading for all submissions.
Fig. 9 and Fig. 10 shows the score comparison between white-

Fig. 8: Score comparison visualization for count vowels
problem sorted by difference

box, black-box, and simulated scores for both problems. It
can be seen that before the black-box score reaches 100, the
white-box score and simulated score tend to change direction
at the x-axis, albeit with a difference in the y-axis and how
significant does the direction change. Once the black-box score
is consistent at 100, both the white-box score and simulated
score stop changing directions and consistently move toward
100. This result supports the theory that white-box scores
generally are closer to manual scores when the black-box
scores are low.

Fig. 9: Score comparison visualization for square problem
with simulated score

Fig. 11 and Fig. 12 shows the distribution of all three scores
in the form of boxplot. Both graphs show that the white-box
scores generally have a larger range and smaller number of
outliers. This shows that the white-box scores are more evenly
distributed compared to the other scores. However, one thing
that should be noted is that the lower range of the white-box
score is longer than both black-box and simulated scores. If
the outliers are ignored, then it can be assumed that there will
be many cases when the white-box score is lower than the
manual score.

To see how far the white-box score deviates from the manual
score, we calculated the Mean Absolute Error (MAE), with
the white-box score as the predicted value and the manual
score as the actual value. MAE is calculated for each problem,
using manual grading when available and simulated scores

2021 International Conference on Data and Software Engineering (ICoDSE)

Fig. 10: Score comparison visualization for count vowels
problem with simulated score

Fig. 11: Score distribution for square problem

otherwise. The scores can be seen in Table III. The scores
suggest that the white-box score is still not accurate enough
to simulate the manual score given by a lecturer or an expert.

Further analysis on cases where white-box scores give
higher results than black-box and manual scores reveals that
the code’s mistakes are located within the collapsed nodes.
The collapse process is meant to simplify the CFG so that
slight writing style differences between the submission and
reference codes would not reduce the score. However, in cases
where there are actual coding mistakes within the code that
follow a single linear flow, the collapse process would cause
the mistake to be skipped, resulting in a higher score than it
should be. As such, further improvements are required so that
the collapse process can be used effectively.

VI. CONCLUSION

The test software built for this project implements the
CFG comparison algorithm to measure the similarity between
student submissions and reference codes from the lecturer.
Through experiment and analysis, it was found that the white-

TABLE III: MAE Score Comparison Table

12 Submissions All Submissions
square 25.7825 16.0459
count vowels 33.5917 11.7257

Fig. 12: Score distribution for count vowels problem

box score from the graph comparison algorithm is relatively
good when the submission code contains minor mistakes but
is structurally correct. However, since the white-box score is
relatively low when the black-box score is high, as well as the
fact that the white-box score is not accurate enough to simulate
the manual grading, it can be concluded that this current
CFG comparison scoring implementation is better suited as
a method to boost student’s scores that are low due to slight
mistakes while writing the code, rather than be applied to all
student submissions.

Future work

While the research covered by this paper only includes CFG
comparison by the graphs’ structures, further comparison by
comparing the contents of each node would allow a more
accurate score generation. A weighted score could also be
implemented so that critical nodes would significantly affect
the final score. If the algorithm has been improved until ac-
curate enough, it may also be implemented within a Learning
Management System (LMS) for automatic grading purposes.

ACKNOWLEDGMENT

The research covered in this paper is a part of a more
extensive work regarding automatic grading involving our
peers Irfan Sofyana Putra, M. Rifky I. Bariansyah, and Bram
Musuko Panjaitan.

REFERENCES

[1] X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware indexing
using function-call graphs,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security, 2009, p. 611–620.

[2] P. P. Chan and C. Collberg, “A method to evaluate cfg comparison
algorithms,” in 2014 14th International Conference on Quality Software,
2014, pp. 95–104.

[3] R. Dévai, J. Jász, C. Nagy, and R. Ferenc, “Designing and implementing
control flow graph for magic 4th generation language,” 2013.

[4] F. E. Allen, “Control flow analysis,” in Proceedings of a Symposium on
Compiler Optimization, 1970, pp. 1–19.

[5] H. M. E. et al., “Ras representation & analysis software,” 2003.
[6] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Polymor-

phic worm detection using structural information of executables,” RAID,
pp. 207–226, 2006.

[7] M. Vujosevic Janicic, D. Tošić, and V. Kuncak, “Software verification
and graph similarity for automated evaluation of students’ assignments,”
Information and Software Technology, vol. 55, p. 1004–1016, 2013.

[8] J. Fernando and M. Liem, “Components and architectural design of an
autograder system family,” vol. 8, pp. 69–79, 2014.

2021 International Conference on Data and Software Engineering (ICoDSE)

