
Integration Model for Learning Management
Systems, Source Control Management, and

Autograders using Service-Oriented Architecture
Principle

Bram Musuko Panjaitan
School of Electrical Engineering and

Informatics, Institut Teknologi Bandung
Bandung, Indonesia

Email: 13517089@std.stei.itb.ac.id

Satrio Adi Rukmono
School of Electrical Engineering and

Informatics, Institut Teknologi Bandung
Bandung, Indonesia
Email: sar@itb.ac.id

Riza Satria Perdana
School of Electrical Engineering and

Informatics, Institut Teknologi Bandung
Bandung, Indonesia

Email: riza@informatika.org

Abstract—Most learning management systems (LMS) use a
file uploader that receives archived source code from a student
for programming exercises and requires the teacher to grade it
manually. In this approach, students do not learn to use standard
professional tools to work on a source code, and the teachers
also spend much time grading. There is an opportunity to use
source control management (SCM), such as Git via GitHub or
GitLab, as a submission method for students. This mechanism
helps programming students practice a common process used in
the professional world as early as possible. Rather than manual
grading, autograders are widely used in Learning Management
Systems to help instructors grade student works. Autograders
work faster than humans and provide objective grading. This
paper discusses an integration model for learning management
systems, source control management, and autograders, each of
these components is usually used separately. We write a reference
implementation that uses Moodle as the LMS and GitLab as
the SCM. We also build a minimally functional autograder in
place for proof-of-concept in this implementation. Students can
submit their work using the merge request feature provided by
GitLab from the repository that they fork from the instructor’s
original repository. The system captures the merge request event,
and the autograder starts grading student works and updates
student scores in the LMS. We also discuss how the system
performs when dealing with many requests semi-simultaneously
to simulate an exam situation. The system follows the Service-
Oriented Architecture (SOA) principle to keep each component
agnostic, and developers can use any LMS, SCM, and autograder
they find suitable. In our experiment, the system can handle 200
submissions in a short period amount of time. The results are
that the student learns SCM basic workflow using the system,
and the teachers are helped by automated grading.

Index Terms—integration, learning management system, auto-
grader, webhook, source control management

I. INTRODUCTION

Teaching programming students to use best-practice tech-
nology helps them prepare for the professional world. There
are many opportunities to put a set of best-practice methods
into their learning process. For example, one best practice
that can be taught is to use source control management when
sharing code.

A lot of educational organizations use a Learning Manage-
ment System as a platform to carry out learning activities.
In operating programming learning activities, many Learning
Management Systems use an old-fashioned way rarely used
in a professional setting to submit student source code work.
Some Learning Management System still requires students to
archive their code into a zip or rar format and upload their code
using the LMS’ file uploader. There is room for improvement
in this process. The uploader process can be replaced with
source control management so that students directly practise a
common professional task of “publishing” source code while
learning to program. This new experience will pretty much be
the same as when a developer pushes their code into a source
control management and trigger a CI/CD pipeline to test the
code, build, and deploy the resulting artefact. However, instead
of CI/CD, this push-action triggers the grading process and
update the student’s score in the learning management system.
This paper discusses how to integrate a learning management
system with source control management and autograders.

II. FOUNDATIONS

A. Learning Management System

Learning Management System (LMS) is an information
system used to support operating digital learning. Learning
Management System will help education organizations to
share and distribute learning content, provide an administration
system, provide a communication channel for instructors and
students. A good Learning Management System follows a few
criteria, such as content can be changed easily to adjust the
requirement, have an automatic and centralized administration
system, and show lesson material quickly [1].

B. Source Control Management

Source Control Management (SCM) is a system that help
developer to track and manage every change on their codebase.
One of the most used SCM is Git, an open-source distributed
version control system [2]. One of Git’s features is branching,

2021 International Conference on Data and Software Engineering (ICoDSE)

978-1-6654-9453-3/21/.00 ©2021 IEEE

duplicating a version of code into an independent branch.
GitLab is a web-based DevOps lifecycle tool that provides
a Git repository manager [3]. GitLab adds features on top
of Git, such as GitLab Webhook and GitLab Forking. GitLab
Webhook is a developer-defined HTTP Callback in the GitLab
repository. This callback is triggered when some events occur,
including merge requests, push, and wiki events. It then sends
a POST request to the destination URL with information
related to the event attached to the body. Developer can define
their destination URL for GitLab Webhook. GitLab Forking is
a mechanism to duplicate a repository from any repository to a
new personal repository. This new repository will bring all of
the commit histories from the original repository. Developers
can use the forking mechanism to create their custom version
or develop a new feature. When developers finish a new
feature, they can add it to the original repository using a merge
request from their repository to the original repository.

C. Autograder

Autograder is a tool to assess source code automatically
with a predefined method. Thus, autograders reduce the
amount of time required to assess students’ programs and
provide objective results. An autograder can be implemented
using a black-box or white-box approach. A sandbox en-
vironment, separate from the host machine and execution
environment, is needed for executing a source code in an
autograder. A sandbox environment limits CPU, memory,
network, and other resources to prevent abusive programs from
impacting the operating system.

In general, there are two ways to achieve a sandbox environ-
ment. Those methods are containerization and jailed sandbox.
In containerization, the server will create a container on top of
the host OS. This container has a dependency that might differ
from the host machine and has limited access, such as read-
only on a particular folder. The server will execute the source
code inside the container, receive the execution’s output, then
destroy the container. One of the popular tools that can be used
to manage container lifecycle is Docker. The second method is
jailed sandbox. This method is done by creating an untrusted
user with limited authority, and then this user executes the
source code directly in the server. Peveler et al. compare jailed
sandbox and container performance when creating a sandbox
environment [4]. They point out that jailed sandbox has a
slightly faster execution time (~0.6 seconds) than a container.
This difference happened because Docker needs to create and
destroy the container, which takes about ~2.4 seconds and
can be improved by using a Docker pool and destroying the
container in the background. On the other hand, it is harder
to achieve a wholly separated dependency between the host
machine and the execution environment with a jailed sandbox
than a container.

III. INTEGRATION MODEL WITH BRIDGE SERVICE

Using best-practice technology in the student learning pro-
cess is still uncommon. This will impact students, as they may
not have enough experience to operate the technology when

entering the professional world. Meanwhile, if the best practice
technology is used while learning, not only do students learn
to use the technology, but instructors can also keep adapting
to the best practice technology. For example, in learning to
program using the LMS context, source control management
can replace the mechanism of doing submission using an
uploader. Also, a manual grading that instructors do to assess
student source code works is repetitive and exhaustive work
that an auto-grading tool can help. Based on that problem,
we will build a learning management system integrated with
source control management and an autograder. Integrating a
learning management system with source control management
means that an assignment in LMS can be solved by submitting
work in SCM. This approach can be realized by utilizing
Webhook in SCM. The system will pick student submission
and process it to get the score and update the data in the
LMS. An integrated system with an autograder means that the
system can use the autograder to produce a score from student
submission. After the system gets the student submission, an
autograder will be executed to assess student work.

The solution applies Service Oriented Architecture as a de-
sign guideline to break down the service component. Service-
Oriented Architecture is a paradigm to decompose a big
problem into several small units of encapsulated, integrated
services [5]. Some of SOA characteristics are open standard,
loosely coupled, support different vendors of technology. If
organizations design a good SOA, they get to benefit from the
scalability aspect. Scalability is a system’s capability to handle
different loads [6]. One SOA design pattern is queue [7]. By
using a queue, servers can communicate asynchronously. The
server will put the message inside the queue, and the target
service will try to pull the message from the queue. When
replying to the message, the target service can use one of these
two options. The first option is to also reply to the message
using a queue, so the communication is still asynchronous. The
second option is to use a callback, and the communication is
synchronous.

Bridge service will be used to integrate LMS with SCM
and Autograder. The bridge service’s goal is to have easier
integration across services. A system administrator can quickly
change other components using a bridge service, such as a
different LMS or any SCM or grader. Bridge service will
adjust the API contract to match the contract between LMS,
Grader, and SCM and the adjustment done in the LMS,
grader, and SCM is minimal. Therefore each component in
this system will become agnostic. Bridge service will have
asynchronous communication with graders because graders
need some time to assess source code. The communication
uses a queue from the bridge service to the grader. The grader
can reply synchronously using a callback. Grader workers need
to execute student source code in a sandbox environment to
limit resource availability and secure the host machine from
malicious code. This environment can be done with the help
of a Docker container.

Based on the above discussion, we devise requirements as
follows.

2021 International Conference on Data and Software Engineering (ICoDSE)

Fig. 1: Interaction Between Components

• The instructor can create a programming assignment, and
the system provides an SCM repository link for student
to submit their work.

• The instructor can upload a metric file when creating
a programming assignment. The autograder uses these
metric files to assess students’ source code.

• Student can link their SCM account into LMS. The
system can recognize student submission from SCM to
update student data in LMS using this data.

• Student can submit their work using merge requests in
SCM. This event must be captured by the bridge service
and passed to the autograder to perform the grading.

The communication between each component needs to
apply the open standard principle from SOA. For example,
when bridge service helps LMS generate the SCM repository
link, each component’s request and response can use an open
standard format, such as JSON format. The system also needs
to support different vendors of technology principles in SOA.
Each component can have a different technology stack. Each
component also needs to be loosely coupled and independent
from the other. If there is any improvement that needs to be
done for teachers in LMS, other components will have minimal
or no changes.

Aside from the functional requirements, the system also
needs to consider some non-functional aspects. For example,
the system needs to keep available when many students submit
their work in a short amount of time. This situation frequently
happens when there is a deadline for an assignment or an
exam. Most of the students will submit their work close to the
assignment’s deadline or the end time of the exam. The system
must be able to receive all those requests and to the grading
process. The system has multiple grader workers that can
be added/removed accordingly to adjust the system’s load to
handle this scenario. Based on that aspect, the non-functional
requirements are as follows.

• Scalability—the system can be scaled to face a different
number of requests.

• Throughput—the system can work with a certain large
number of users.

There are four main components shown in Fig. 1, LMS,
SCM, Bridge Service, and Grader Worker. Bridge service and
LMS has their database. A queue will be used between bridge
service and Grader workers. Next, we discuss each process.

Fig. 2: Sequence Diagram - Student assignment workflow

a) Creating a programming task: The process starts
when the instructor opens the task creation form on the LMS
page. There, the instructor fills in assignment data and upload
a metric file. After LMS creates the assignment, LMS will
create a request to bridge service to create a repository in
SCM using SCM API. After that bridge service will save the
repository link and give LMS the link so that the LMS can
show the link for students and instructors.

b) Connecting an SCM account with the LMS: This
process is achieved with the help of the bridge service. A
student needs to press the verification button inside the LMS
profile page and be redirected to the bridge service page.
Bridge service will also redirect the student to the SCM login
page. After students log in successfully, the bridge service will
get user data from the SCM, such as ID and username. The
data will be saved in the bridge service database and LMS
database.

The sequence diagram is shown in 2. Students can go to the
LMS and look at their SCM repository assignment link, and
then they can fork the central repository and then commit and
push the changes into SCM when they finish the task. Then,
the student can create a merge request from their repository to
the central repository for that assignment to submit their work.
When a merge request is issued, SCM will send a webhook to
the bridge service. Bridge service will validate the webhook,
get student source code, student data, and metric file, and send
it to an autograding queue. After the autograder finishes the
grading process, the bridge service receives a callback with
the student’s score and forwards the score to the LMS using
the API provided by the LMS.

An autograding task starts when the bridge service sends a
grading request through the queue. Autograder will start the
work by extracting the student’s source code to a temporary
location. After that, a container will be spawned to execute
student source code. This execution is run for all the test cases.
After all the test cases have been evaluated, the autograder
summarises the student store and send it to the bridge service.

IV. REFERENCE IMPLEMENTATION

A. Implementation

In this implementation, LMS, SCM, and an autograder
are integrated with a bridge service. Moodle is used in this

2021 International Conference on Data and Software Engineering (ICoDSE)

implementation because of its excellent flexibility for cus-
tomizability. Also, Moodle has an open-source license and a
vast developer community. GitLab is used as the SCM because
of its open-source nature, while the bridge service is built using
NodeJS and express web framework and PostgreSQL database
management system. The bridge service database includes
four entities: student, assignment, metric file, and submission
history. The bridge service has three integration points: with
Moodle, GitLab, and an autograder. The bridge service helps
Moodle in GitLab account verification, creating a new assign-
ment, and updating user scores. When verifying the account,
the bridge service will provide GitLab OAuth login, get GitLab
username and GitLab id, save it to the bridge service database,
and send it to Moodle using core user update users function
in Moodle external API. When creating a programming as-
signment, the bridge service will save assignment detail and
store file metric inside a file server in the bridge service
and request GitLab using GitLab API to create a repository
and pass it to Moodle. After the bridge service gets the
score from the grader, it updates the score in Moodle using
core grades update grades function, mod assign component
in Moodle external API.

Bridge service integrated with GitLab when providing Git-
Lab OAuth, creating a repository, and receiving webhook.
GitLab login OAuth is achieved by using the passport and
passport-gitlab-2 library. Bridge service needs application id
and application secret to use this library and provide GitLab
OAuth. This login is only done once the user verifies for the
first time to get the username and GitLab id. Other token-
related data will not be stored or taken by bridge service. When
creating a programming assignment bridge service, use GitLab
API with @gibreaker/node library as GitLab API wrapper
to keep repository name unique, assignment id included in
repository name, bridge service also creates GitLab webhook
that connect that repository to bridge service with merge
request event only. A private token instructor is hardcoded
inside the bridge service to use this API. When GitLab notifies
that there is a merge request event, the bridge service will take
student source code using GitLab API and create an archived
file from a list of files. For integration with the grader, the
bridge service needs to request grading. This process can be
achieved by sending the message via RabbitMQ as a queue.
This message contains student source code, metric file, and
student data. The grader will reply via callback, and the bridge
service will provide that endpoint. When this happens, the
bridge service will save the submission history and send the
result to Moodle.

Moodle will have a slight modification to support a new
programming assignment and GitLab verification. When an
instructor creates a new assignment, two new fields need to
be filled, the first is the metric file field, and the second
is the grading method. The Metric file field is used to get
the metric file for programming assignments and the grading
method to choose whether the grading will do once for the
first submission only or every submission as long as the due
date has not crossed yet. These added fields can be achieved

by modifying Moodle assignment creation form module. To
support GitLab verification, the user profile field in Moodle
added an extra field: GitLab. GitLab field in user profile has
two attribute username and isGitlabVerified. A student cannot
fill this field manually. Instead, they need to press a button
created inside the edit profile page that redirects the user to
the bridge service page. We can add this button by modifying
the edit profile form module in Moodle.

A simple black-box autograder is built for this implemen-
tation using the Python programming language for grading
Python programs. The grader connects with RabbitMQ using
the pika library. The grader consumes the message from the
queue and only acknowledge the message when the grading
process is finished to prevent any data loss if there is an error
while doing the grading process. When it receives a grading
request from the queue, it parses the message and retrieves
the student’s source code encoded in base64. The code is then
extracted into a temporary folder using the shutil and tarfile
libraries in the host machine. Next, the grader will spawn
a docker container using the docker-py library and execute
student source code. Finally, the grader will execute a docker
container for each test case in an array of test cases.

self.container = client.containers.run(
image="python:3.9-alpine",
command=f"sh -c ’{command}’",
read_only=True,
network_mode="none",
volumes={self.tmpPath: {"bind": "/workspace",

"mode": "ro"}},
working_dir=os.path.join("/workspace", "src"),
nano_cpus=1 * 1000000000,
mem_limit="128m",
memswap_limit="256m",
pids_limit=64,
detach=True,
log_config={
"config": {

"mode": "non-blocking",
"max-size": "1m",
"max-file": "2"

}}
)

Fig. 3: Docker container configuration

Docker container configuration is shown in Fig 3. Docker
will use python docker image because, in the testing, the
student will use python language. Network, CPU, memory,
memory swap is limited in the docker container. Volume in
the docker container binds with the host machine so that that
docker container can access student source code. Each test
case will be piped into the python3 executable. After finishing
the grading, the grader will send the total score to the bridge
service with a callback URL, send an acknowledgement to
RabbitMQ and be ready for the following message.

No modifications are required in GitLab for the integration.
Therefore, we use the main hosted https://gitlab.com in our
reference implementation. In GitLab, there are some tokens
needed. The first one is a private token. This token is used for
creating a repository and fetching student source code. The

2021 International Conference on Data and Software Engineering (ICoDSE)

Fig. 4: Deployment Diagram

second token is application secret and application id. These
two tokens are required to create GitLab login OAuth.

The deployment diagram is shown in Fig. 4. Three envi-
ronments were used, those are bridge service server, Moo-
dle server, and local machine. Bridge service server and
Moodle server use Digital Ocean cloud VPS service. The
bridge service server uses 1 GB RAM and 1 CPU, while
the Moodle Server uses 2 GB RAM and 1 CPU. There are
some components in the bridge service server: bridge service
container, RabbitMQ container, bridge service database using
PostgreSQL with a container, and grader worker. Moodle
server consists of Moodle container using moodlehq/moodle-
docker container with MySQL container as Moodle database
and grader worker. Grader workers are also deployed on a local
machine. Grader worker is deployed in many places to speed
up the whole process required to do the grading. The grader
worker is not in a container because the grader worker will
spawn a docker container when doing the grading process. If
the grader spawns a docker container inside a docker container,
extra complexity can be avoided by just running the grader
worker outside the docker container.

B. Testing

Testing is carried to check whether the implementation is
already aligned with the requirement mentioned previously.
There are three phases of testing executed: functional testing,
non-functional testing, and student-facing testing.

Functional testing held to check the implementation already
support all functional requirement. There are three scenarios
for this testing. The first scenario is a teacher creating a
programming task and uploading a metric file, checking if
Moodle and bridge service saves the metric file and creating a
GitLab link. The second scenario is a student doing a GitLab
account verification from Moodle page and checking if the
data is saved in the database. The student can also see their
GitLab username from Moodle. The final scenario is a student
submitting source code using a merge request and checking if
their score is posted on Moodle assignment page.

For the first scenario, the system successfully creates and
stores a programming task with a metric file and provides a
GitLab repository as the central repository for that assignment.
The system successfully saves the GitLab and Moodle student

Fig. 5: Simulation time comparison

association data in the database for the second scenario.
Moodle also show GitLab username in Moodle profile. For
the last scenario, the system successfully captured the merge
request event and did grading using autograder. Bridge service
also updates student scores in Moodle. Thus, all the functional
requirement has been achieved.

Non-functional testing is held to check the implementation
is supporting non-functional requirements, those are availabil-
ity and throughput. The author simulates an exam situation
where there are many submissions in a short time. This
execution will be run four times with the different grader
workers, so there is a condition where the system has one
grader, two graders, three graders, and four graders. There is
200 submission request that sent in 3 minutes. Those requests
will test the throughput of whether the system can handle
all those requests and test the scalability whether the system
can handle all requests faster when there is an extra grader
added. The first two autograders are deployed in the cloud,
with 1GB RAM and 1 CPU for the first grader and 2GB
RAM and 1 CPU for the second. The third autograder is
deployed on the local machine with 16GB RAM and 4 CPUs.
The fourth autograder is also deployed on the local machine
with 8GB RAM and 8 CPU. To simulate 200 submission
requests, the author uses 4 GitLab account that submits their
work 50 times for each account and using a script to submit
each submission subsequently with a total time of 3 minutes
to send all those 200 requests with average speed 200/180
second (1.11 second).

Based on Fig 5, there is an improvement in the total time
needed for the system to finish all the requests with an extra
grader. Therefore, more graders result in faster elapsed time,
but there will be a plateau if there are too many graders.
Aside from the total grader number, machine specifications
also determine the speed of execution time. Based on Table I,
the local environment has a faster average execution time due
to superior resources. The local environment uses a four-core
CPU and 16GB RAM. The Local Environment (Laptop) uses
an eight-core CPU and 8GB RAM.

When the system uses only one grader, the elapsed time is so
high. This longer time happened because the message comes

2021 International Conference on Data and Software Engineering (ICoDSE)

with a speed rate of 1.11 seconds is faster than the average
execution time that the bridge service server has, which is
around 3.62 seconds. Therefore, there will be many messages
in queue piling up and waiting for the grader to finish the
grading process. Fewer messages in the queue pile up when
extra graders are added, so the total elapsed time will be faster.
However, when there is too much grader, one of the graders
will not get the grading request because other graders will
consume it first, so the elapsed time will become a plateau.

TABLE I. Average and standard deviation grader execution
time

Name Avg execution
time (s)

Std execution
time (s)

Moodle server 4.0 0.18
Bridge Service server 3.62 0.24
Local Environment 1.51 0.24
Local Environment (Laptop) 2.03 0.21

Student-facing testing was conducted to ensure that the
student could use the system smoothly and acquire potential
feedback. Students are asked to verify their GitLab accounts on
the Moodle page and submit their work using merge requests.
The account verification test runs smoothly without any hurdle.
However, students need to learn to use Git features such
as git commit, push, add, and clone for submission using
merge request. They also need to familiarize themselves with
GitLab’s fork repository and merge request features. In this
testing process, we received feedback that there needs to be
instruction on submitting source code using this new method
in the LMS.

V. DISCUSSION

We can see that the design’s implementation is working
according to the requirement. Using SOA also helps speed
up the system’s implementation because each component will
be independent. In addition, open-source applications such as
Moodle and GitLab can be used for our model.

One of the flaws of using merge requests in SCM to
submit students’ works is that other students can see the
merge requests. Thus, this merge request method can lead
another student to cheat by looking at other students’ work
and copying the code. The easy solution to tackle this issue
from the author is to add one extra step in the grading process.
When there is a merge request, the bridge service will receive
the event and directly delete the merge request. Then the
bridge service will fetch the code from the student’s repository
directly.

Nevertheless, this approach also has some disadvantages.
The first one is that it will be hard for a teacher to do manual
checking since the merge request is deleted. The second one is
that there will be a fraction of time from a student submitting
work to bridge service deleting the merge request. There is
no guarantee that other students do not access other student
merge requests in this tiny time gap.

Related work has been done by Inggriani Liem and Karol
Danutama in 2013. The similarity is integrating Moodle with
an autograder. For the architecture, they use a service dis-
patcher to control the queue load that graders will consume.
The big difference between our research and the previous
work is the submission method. The previous research creates
a new question type in Moodle called “source code” for
students to upload their archived source code in the uploader.
Meanwhile, in this research, source control management is
used for students to submit their work.

VI. CONCLUSION

Based on the implementation and testing, we can conclude
that the Learning Management System is integrated with
Autograder and SCM with the help of the bridge service as
an integrator service. Using SCM in the learning process can
teach a student to use the Git command and SCM feature.
Automated grading also helps the teachers. If we look at
the testing performance, the time system needs to handle
200 requests in 3 minutes is 3 minutes and 30 seconds,
which is relatively fast. The functional and non-functional
requirements that define the design process is all implemented
in the reference implementation. The system also decomposed
to several small services, so it is easier to change components
in the future if needed.

The author has some suggestions that can be considered
for future works. First, a configuration in Moodle page when
teachers create a programming assignment can be more de-
tailed so that each assignment can be more customizable.
Second, a worker or a queue can be added inside bridge service
to handle some bridge service heavy tasks and add more
throughput in bridge service. Third, the bridge service can
be split into several services to better follow SOA principles.
Lastly, the cheating aspect needs to become a consideration.
As we mentioned, in our current setup, students can see
another merge request. For the system to be used in an actual
education setting, this will need to be addressed.

REFERENCES

[1] Ellis, R. K. (2009). Field Guide to Learning Management Systems.
ASTD Learning Circuits.Git

[2] GitLab. 2020. The First Single Application For The Entire Devops
Lifecycle - Gitlab. [online] Available at: ¡https://gitlab.com/¿ [Accessed
17 June 2021].

[3] Git-scm.com. 2020. Git. [online] Available at: ¡https://git-scm.com¿
[Accessed 22 August 2021].

[4] Danutama, K., & Liem, I. (2013). Scalable Autograder and LMS
Integration. Procedia Technology

[5] Erl, T., (2005). Service-Oriented Architecture: Concepts, Technology,
and Design. 1st ed. Prentice Hall.

[6] Abbott, M. L. & Fisher, M. T,, (2015). The Art Of Scalability. 2nd ed.
Addison-Wesley.

[7] Erl, T., (2009). SOA Design Patterns. 1st ed. Prentice Hall PTR.

2021 International Conference on Data and Software Engineering (ICoDSE)

