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Abstract—The widely popular approach for automatic grading
in computer science is to run black-box testing against the
student’s implementation. This kind of autograder evaluate
programs solely based on their outputs given a set of inputs.
However, manually writing a set of test cases with high coverage
is laborious and inefficient. Hence, we explore another alternative
approach in building test cases, specifically white-box testing.
In theory, by knowing the internal workings of implementation,
we can evaluate all possible execution paths, producing better
test cases coverage, ultimately producing a complete grading. In
this paper, we present research on using semantic analysis to
generate test cases to determine the correctness of a student’s
implementation. Instead of writing test cases, the evaluator
will write a reference code, a correct implementation based
on the programming problem specification. We implement a
system that records execution paths, detects path deviation, and
checks path equivalence to analyze the semantic difference of
the reference code and student’s implementation. The system
is built utilizing a concolic execution method for exploration
and an SMT solver to solve formulas. Our experiments reveal
that it is possible to automatically generate test cases and grade
programming assignments by analyzing the semantic difference
between reference and student implementation. Compared with
grading using a random test case generator, it is evident that
the system can provide better test case coverage for automatic
grading in many occurrences.

Index Terms—automatic grading, test case generation, symbolic
execution

I. INTRODUCTION

In computer science, programming exercise is used by
students as a medium to implement theoretical knowledge
into a program. Students rely on programming assignments
grade as a study guide and feedback on their progress.
However, manually grading programming assignments is time-
consuming and not feasible for a large class. The more students
in a class, the higher the possibility of error in grading. This
problem has pushed the research effort on automatic grading.
With automatic grading, students can receive feedback quickly,
which increases the possibility to rework an incorrect imple-
mentation. The majority of automatic grading systems uses the
black-box testing approach [1]. In this approach, the instructor
or evaluator writes a set of test cases for the programming

problem. The correctness of a student’s implementation will
then be determined using this set of test cases. However,
writing a complete set of test cases, covering most if not all
edge cases, requires a high amount of effort. This issue risks
grading with an incomplete set of test cases, producing grades
that do not reflect a student’s abilities well.

This problem calls out the necessity for a different approach
to writing test cases for programming exercises. This paper ex-
plores the potential of utilising a white-box testing technique,
specifically semantic difference analysis, for generating test
cases with better coverage. We present PyAssesment, a refer-
ence implementation of the automated grading system based
on concolic execution for Python programming assignments.
PyAssesment receives a reference code, i.e., a solution from
the evaluator, and a student implementation as inputs. The
system observes the semantical difference between the two
implementations to generate a set of test cases to determine
the correctness of the student implementation.

This paper is structured as follows. We first discuss the
foundational basis of our work in Section II. Then, we explain
our approach in generating test cases in Section III. Next, we
present the result of our experiments in Section IV and discuss
the key insights in Section V. Finally, we conclude and suggest
further research direction in Section VI.

II. FOUNDATIONAL BASIS

A. Automatic Grading

An automatic grading system is used for grading pro-
gramming assignments in scientific computing [2]. It is built
to increase the speed and capacity for evaluating students’
submissions. A study shows that automatic grading on an
introductory computing course positively impacts students’
learning process as a feedback system. It increases the number
of resubmissions, which indicates the usage of feedback to
correct their implementations. In general, there are two ap-
proaches for automatic grading systems: black-box and white-
box testing.

Black-box testing or functional testing utilises test cases
written based on the program’s specifications. This kind of
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testing is conducted without having access to the program’s
internal mechanism. A review of the current automatic grading
system shows that assessing the functionality of students’ code
is still the most often used criteria to grade programs [1]. This
grading system uses industrial testing tools such as XUnit,
acceptance testing framework, web testing frameworks, or
various specialised solutions such as output comparison and
scripting.

White-box or structural testing utilises test cases written
based on the program’s source code instead of its specifi-
cations. This testing can only be conducted with access to
the program’s internal mechanism. While it is getting more
commonly used in industry, it has found relatively rare and
experimental use in automated grading systems [1].

B. Symbolic and Concolic Execution
Symbolic execution is a program analysis technique that

involves executing a program. However, instead of supplying
actual inputs to a program, like numbers or strings, we supply
symbols representing arbitrary values. The goal of this method
is to find possible execution paths in a program. The code
snippet in Fig. 1 will be used to illustrate how symbolic
execution works. First, we will supply x0 and y0 as the
symbolic inputs for parameters x and y, respectively. Then
we will execute the programs normally. Each encounter with a
control flow statement will store both true and false conditions
of the statement to the path constraint. The full representation
of all possible execution paths can be observed in Fig. 2, with
the leaves representing the path constraints.

void foo(int x, int y) {
int z = 2 * x;
int k = 3;
if (z > k) {

if (y < z) {
exit(EXIT_FAILURE);

} else {
assert(y != z);

}
}

}

Fig. 1: A code snippet in C [3].

Fig. 2: Execution tree for the snippet in Fig. 1 [3].

Symbolic execution has found several uses in comparing
two program implementations. Brumley et al. [4] proposed

path deviation to find errors in different protocol imple-
mentations. Zhang et al. [5] proposed path equivalence to
build a program logic-based approach to software plagiarism
detection. Path deviation exists when given an input; two
implementations will each follow a particular path. When
given a different input, one implementation follows the same
path as before while the other follows a different path. Path
equivalence is used to ensure that the path deviations we
find are actual semantics deviations rather than mere code
obfuscation. These researches show the power of symbolic
execution for exploring paths in program implementation.

Concolic execution or dynamic symbolic execution is a
variation of symbolic execution run concurrently with concrete
execution [6]. Instead of only keeping symbolic variables, it
will also store an actual value for the variables. With this
approach, complex constraints that a constraint solver cannot
solve can be simplified by replacing symbolic variables with
concrete values. The path constraint will be used incrementally
to explore execution paths, delivering a higher coverage.

This method can be used to capture a program’s semantics.
Semantics describes what a program means. It is a rule of
interpreting syntax that has no direct meaning [7]. Some
examples of research related to semantic difference analysis
follow.

a) Semantic Diff: Semantic Diff is a tool for summariz-
ing the effects of modification. The tool takes two versions of
a procedure and generates a report summarizing the semantic
differences between them [2].

b) Symdiff: Symdiff is a language-agnostic semantic
difference tool for imperative programs. This tool performs
equivalence checking and displays semantic differences [8].

III. TEST CASES GENERATION

A. Basic Idea

The basic idea of the system is to explore and observe
semantic differences between a reference and a student im-
plementation to generate a complete set of test cases for
grading. For the exploration, we use concolic execution, a
higher coverage variant of symbolic execution. After explo-
ration, we detect path deviation [4] and path equivalence [5]
between the paths. We seek path deviation and equivalence
to explore both implementations completely and find paths
that are semantically different. Test cases generated from
semantically different paths might lead to different outputs in
two implementations that point out incorrectness in them.

B. Design

The flow diagram for our design is illustrated in Fig. 3. The
process can be divided into three phases: concolic exploration,
path deviation detection, and path equivalence checking. The
main goal of the research is to generate better test cases, but
we also designed the system to include the grading process
using the generated test cases. Firstly, the system generates
an early set of test cases with concolic exploration. Then,
we supply each iteration with this early set. While the set is
not empty, the grading process continues. We pick a test case
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in each iteration and execute both the student and reference
implementation against this test case. If the outputs between
the implementations are different for a test run, the student
implementation will be considered wrong for that test case.
If the outputs are equal, the process will continue to path
deviation checking. If there is no path deviation detected,
then the process will skip to the next iteration. Otherwise, the
process will continue to path equivalence checking. Finally,
if there is a path equivalence, the grading will continue to
the next iteration; otherwise, it will consider that the student
implementation is wrong for that test case. To sum up, the
set of test cases might come from concolic exploration, path
deviation detection, and path equivalence checking.

outputs
match?

outputs
match?

start
Concolic

Exploration
test case
available?

Path Deviation
Detection

stop

satis�able?

Mark Test Case
as Wrong

Path Equivalence
Checking
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yes

no

yes

no yes

yesno

no
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Fig. 3: The flow diagram for our grading system.

a) Concolic Explorer: The concolic explorer is illus-
trated in Fig. 4. The component will explore reference and
student implementation for possible execution paths using
concolic execution, hence the name concolic explorer. Each
execution path from the exploration will be paired with a test
case. The test cases will be compiled as an output of this
component.

Fig. 4: The concolic explorer.

b) Execution Component: The purpose of this com-
ponent is to execute reference and student implementation
with the same input. The input comes from the concolic
explorer, counterexample from path deviation detection, or
counterexample from path equation checking. Every time a
truth value testing is performed (e.g., conditional statements
or loop conditions), the statement will be appended to the path
constraint. Thus, the component will return output and path
constraint from both implementations as the execution result.

c) Path Deviation Detection: The path deviation detec-
tion is illustrated in Fig. 5. This component aims to determine
if there is any path deviation between reference and student
execution paths. This component takes reference and student
path constraints as inputs. The process can be divided into two
phases: formula building and constraint solving. Given two
constraints, an input that shows path deviation will satisfy one
path constraint but not the other.

Fig. 5: Path deviation detection.

To determine if such input exists, we check the satisfiability
of (1), as used by Brumley et al. [4].

(Fp(x) ∧ ¬Fs(x)) ∨ (Fs(x) ∧ ¬Fp(x)) (1)

Fp(x) is the reference path constraint, and Fs(x) is the
student path constraint. In general, if the formula is not
satisfiable, no path deviation is detected, and the grading will
skip to the next iteration. However, if the formula is satisfiable,
there is a path deviation detected. The counterexample is the
input that points to a path deviation.

d) Path Equivalence Checking: The path equivalence
checking is illustrated in Fig. 6. This component aims to
determine if there is any path equivalence between reference
and student execution paths. We do this to make sure the
path deviation is accurate and not caused by obfuscation.
This component takes reference and student output and path
constraint as inputs. Similar to path deviation detection, the
process can be divided into formula building and constraint
solving. For example, given two constraints, an input that
shows a lack of path equivalence will satisfy the conjunction
of the path constraints and inequality of the outputs.

Fig. 6: Path equivalence checking.

To determine if such input exists, we check the satisfiability
of (2), as used by Zhang et al. [5].

(Op 6= Os) ∧ (Fp(x) ∧ Fs(x)) (2)
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Op is the reference output, and Os is the student output.
In general, if the formula is not satisfiable, the paths are
considered equivalent, and the grading will continue to the
next iteration. If the formula is satisfiable, there is a lack of
path equivalence. The counterexample is the input that shows
incorrectness in the student implementation.

IV. EXPERIMENTS

We evaluate the system using problems and student sub-
missions from freshman-level programming courses for the
informatics major in our institution. For the experiments, we
wrote a reference implementation for each problem. We also
grade the student implementations using a random test case
generator to compare against PyAssesment.

A. Reference Implementation

The reference implementation “PyAssesment” is written in
Python for grading Python programs. We leverage PyExZ3 for
concolic exploration early in the grading process [9]. PyExZ3
is a concolic execution tool (or dynamic symbolic execution
referenced on the paper) for Python programs. PyExZ3 also
inspires the technique used in the execution component to store
path constraints. To solve constraint problems, we use Z3 as
the SMT solver [10]. Z3 is a prominent SMT solver widely
used in various software verification and analysis applications.
Z3 is used in PyExZ3, path deviation detection, and path
equivalence checking. The current version of PyAssesment
has two limitations: it can only grade implementations in the
form of function with a return statement, and it can only grade
implementations with integer inputs.

B. Studied Cases

We studied six programming exercises for freshman-
level programming courses in an Informatics bachelor pro-
gram. We use the following exercises: 1) max 3, finding
maximum value out of three integers, 2) square, build-
ing a square of string from characters ‘*’ and ‘#’, 3)
student grade, returning index (‘A’–‘E’) based on grade
(0–100), 4) is allowed to buy, checking whether a gro-
cery purchase is allowed based on a fixed set of rules, 5)
no of triangle, returning the number of triangles that can be
created out of three lengths, 6) water, returning water form
based on temperature. We examine ten different submissions
for each exercise, i.e., no two submissions use the same
approach. For each exercise, we wrote a reference implemen-
tation to be used in grading. Because of the implementation
limitations, we translate the submissions into a function that
takes integer parameters and has a “return” statement.

C. Running Example

We use max 3 to demonstrate how the system works. Fig. 7
shows our reference code (max 3 ref ) and one student’s
implementation (max 3 std). First, an early set of test cases
is generated with concolic exploration. From the set, we take
one test case, for example (a = 0, b = 0, c = 1), to
be executed using both implementations. The execution will

return 1 in both implementations and path constraints, as
shown in Table I. Then, the system detects if there is any path
deviation between the two paths. A path deviation formula is
built from the path constraints, also shown in Table I. The
path deviation formula is proven to be satisfiable by the SMT
solver, indicating a path deviation. A new test case is generated
from the SMT solver, (a = 0, b = 0, c = 0), and is executed
by both implementations. The execution returns 1 in both
implementations and path constraints. The system makes sure
the path deviation it finds is a semantic deviation by checking
path equivalence; the formula is shown in Table II. The path
equivalence formula is proven to be satisfiable, indicating the
lack of path equivalence. The SMT solver returns (a = 0,
b = 0, c = −1) as counterexample. With the new input, the
reference code returns 0 while the student’s implementation
returns -1, signifying a detected mistake. The final set of test
cases generated is used to grade the student implementation,
resulting in a 91.6% score.

TABLE I. Running Example Part 1.

Path Constraints from 1st Execution
Reference And(a >= b, a < c, b >= a, b < c)
Student And(a <= b, b <= a)
Path Deviation Formula in Z3 Expression
Or(And(And(a >= b, a < c, b >= a, b < c),
Not(And(a <= b, b <= a))),
And(And(a <= b, b <= a),
Not(And(a >= b, a < c, b >= a, b < c))))

TABLE II. Running Example Part 2.

Path Constraints from 2nd Execution
Reference And(a >= b, a >= c)
Student And(a <= b, b <= a)
Path Equivalence Formula in Z3 Expression
And(a ! = c,
And(And(a >= b, a >= c), And(a <= b, b <= a)))

max 3 ref max 3 std

def max_3_ref(a, b, c):
if a >= b and a >= c:
return a

elif b >= a and b >= c:
return b

else:
return c

def max_3_std(a, b, c):
if a > b and a > c:

return a
elif b > a and b > c:

return b
else:
return c

Fig. 7: Two implementations of max 3.

D. Result: Grading Scores

We present the score differences between grading with
randomly generated test cases and PyAssesment’s test cases.
The random test cases are generated using a pseudo-random
Python module. The grading result is shown in Fig. 8. The
y-axis represents the score for each student implementation.
Blue bars represent grading results with random test cases and
red bars for PyAssesment’s test cases. In general, the scores
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Fig. 8: Grading Result.

are higher when using randomly generated test cases. These
scores indicate failing cases discovered by PyAssessment but
not covered by the randomly generated test cases.

E. Result: Branch Coverage

We also analyze the branch coverage differences between
randomly generated test cases and PyAssesment’s test cases.
The grading result is depicted in Fig. 9. The y-axis represents
the branch coverage for each student implementation. Blue
bars represent random test cases coverage and red bars for
PyAssesment’s test cases coverage. Overall, the branch cover-
ages are higher for PyAssesment’s test cases. All problems
except no of triangle and water are 100% covered by
PyAssesment. The coverages from random test cases are also
quite high in more straightforward problems, like square and
max 3. However, as we discuss later, branch coverage is not
a good indicator for grading completeness.

TABLE III. Number of Passes in student grade.

Condition PyAssesment’s Test
Cases

Random Test Cases

a < 0 2 (15.3%) 6 (42.8%)
a > 100 1 (7.6%) 0 (0%)
80 ≤ a ≤ 100 2 (15.3%) 1 (7.1%)
73 ≤ a ≤ 79 2 (15.3%) 0 (0%)
65 ≤ a ≤ 72 1 (7.6%) 1 (7.1%)
57 ≤ a ≤ 64 2 (15.3%) 4 (28.4%)
50 ≤ a ≤ 56 1 (7.6%) 1 (7.1%)
35 ≤ a ≤ 49 1 (7.6%) 1 (7.1%)
0 ≤ a ≤ 35 1 (7.6%) 0 (0%)

V. DISCUSSION

The higher scores in grading using randomly generated test
cases indicate higher coverage when grading with semantically
generated test cases. The difference is especially noticeable
in complex problems like is allowed to buy that involves

many complex statements. PyAssesment is designed to find a
condition specifically from the statements it encounters during
execution, which random test cases are less likely to find.
In grading our sample student implementation, random test
cases deliver no wrong cases as the final result. Meanwhile,
as we see in the running example, the semantic-based test
case generation produced (a = 0, b = 0, c = −1) from
path equivalence detection, which returns different output in
the student implementation. The student’s work is only wrong
when condition a = b, a > c, and a > b is satisfied, which is
not bound to be found with random test cases.

Nevertheless, as we can see, some students achieve higher
scores in some exercises when graded using PyAssesment’s
test cases. We found that this happens because many test
cases from a random generation point to the same path. This
phenomenon can be best explained by observing the grading
of the problem student grade, where PyAssesment’s test
cases return a score of 76.8% and random test cases return
57.1%. Table III shows the number of times a condition
in student grade is passed. The student implementation is
proved wrong when the input is less than 0 or greater than
100. Six of the 20 random test cases pass the condition where
the input is less than 0, while none passes the condition where
the input is greater than 100. At the same time, PyAssesment’s
set of test cases passes both wrong conditions. Hence, in this
case, the lower score using the random test cases does not
show a higher test case coverage.

We also analyze the branch coverage of those test cases to
see if it is a good indicator for grading completeness. Complex
problems manifest higher branch coverage in PyAssesment test
cases very well, while random test cases can only achieve
high branch coverage in simple problems. Although, some
PyAssesment test cases have low branch coverage when there
is unreachable code in the implementation, as encountered in
the no of triangle case (Fig. 9). Ultimately, we find that
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Fig. 9: Branch Coverage.

100% branch coverage does not indicate a complete grading.
In grading max 3, both PyAssesment’s and random test cases
return a 100% branch coverage. Nevertheless, PyAssessment
test cases expose a mistake in the student implementation,
but random test cases do not. Investigation on the branch
coverage shows that it is possible to pass all branches without
encountering a wrong condition. In this example, we need to
have a test case that satisfies a = b, a > c, and a > b to point
the mistake in student implementation. In that condition, our
sample student implementation will go to the latest else state-
ment and return the variable c. To pass that particular branch,
we can also use an input of (a = 0, b = 0, c = 1), which does
not satisfy a = b, a > c, and a > b. This example shows that
it is possible to have 100% branch coverage and incomplete
grading simultaneously. Therefore, branch coverage is not the
best indicator for grading completeness. Based on the result,
testing using another type of coverage might be a good idea for
future work. One type that might fit this problem is condition
coverage, which has not yet been explored for Python at the
time of writing.

VI. CONCLUSION

We have proposed a semantic-based test case generation.
Semantic difference is analyzed by running concolic explo-
ration, finding path deviation, and checking path equivalence.
By utilizing this method, we can provide test cases that are
automatically generated and more complete than randomly
generated test cases. Semantic-based test cases also provide
higher branch coverage, but branch coverage is not a good
grading completeness indicator.

Future Work

Another approach to grading student assignments is using
the semantic difference directly instead of for generating test
cases. With this model, the system can produce a score based
on how semantically similar are the student and reference
implementation. In contrast with the PyAssignment, which

ultimately executes a black-box grading against test cases
generated using a white-box technique, this approach will be
using a white-box method for grading.
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