
Guiding Peer-feedback in Learning Software Design using UML
Satrio Adi Rukmono

sar@itb.ac.id
Institut Teknologi Bandung

Bandung, Indonesia
Eindhoven University of Technology

Eindhoven, The Netherlands

Michel R. V. Chaudron
m.r.v.chaudron@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

ABSTRACT
Students find learning to design software challenging. There are
often multiple ways to solve a problem, and it is not easy to recog-
nise how well one is doing. Feedback from the lecturer, teaching
assistant, or peers may help students learn from their mistakes. In
this paper, we study students giving and receiving peer feedback
on software design to discover the type of feedback that students
find helpful, to provide guidance in giving good feedback, and to
learn how students use the feedback they receive to improve their
design. We examine data from a software project course for third-
year informatics bachelor students. We asked students to give peer
feedback and respond to the feedback they received. We discovered
that students value i) explicit positive feedback, ii) feedback with
specific examples, and iii) separate feedback on syntax and seman-
tics. We present guidelines for stimulating helpful peer feedback
and found that students’ motivation or seriousness in working with
the assignment affects their willingness to incorporate the feedback
they received into their design.

CCS CONCEPTS
• Software and its engineering → Unified Modeling Language
(UML); Designing software; • Social and professional topics
→ Student assessment; Software engineering education.

KEYWORDS
software engineering education, design feedback, UML
ACM Reference Format:
Satrio Adi Rukmono andMichel R. V. Chaudron. 2022. Guiding Peer-feedback
in Learning Software Design using UML. In 44nd International Conference
on Software Engineering: Software Engineering Education and Training (ICSE-
SEET ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3510456.3514148

1 INTRODUCTION
Students find learning to design software challenging. One reason
is that there are often multiple ways of solving a problem instead
of one correct solution. Moreover, unlike source code, a software
design cannot be ‘tested’ to validate its correctness. Also, there

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9225-9/22/05. . . $15.00
https://doi.org/10.1145/3510456.3514148

are multiple perspectives to take into account when designing
software [6]. As a result, it could be hard for students to understand
each perspective cleanly, thus making it difficult to recognise how
well they are doing.

Feedback may help students learn from their mistakes. Feedback
is commonly provided by lecturers, teaching assistants (TA), or stu-
dent peers in a higher education setting. Asking students to provide
feedback to their peers put them in a different perspective. This
perspective can help them gain a better understanding of software
design quality, i.e., the act of giving feedback forces students to
think deeper on design (including their own). A concern of novice
peer feedback is that it can be useless or even harmful. Therefore,
for peer feedback to be meaningful, we need to recognise the type
of feedback that students find helpful and guide students to give
helpful feedback.

In this paper, we explore the use of peer feedback to increase
students’ learning of software design. We aim to gain insight into
the following research questions:

RQ1 What type of feedback do students find helpful?
RQ2 How to instruct, or guide, students to give good feedback?
RQ3 How do students use the feedback they receive to improve

their design?
Overall, we pay special attention to what students learn from feed-
back in software design.

The remainder of this paper is organised as follows. First, we dis-
cuss the background to our research, i.e., what readers are expected
to be familiar with, in Section 2. We then discuss other related
studies in Section 3. Next, we describe the methodology for the
study we conducted in Section 4. Section 5 discusses our findings
and Section 6 answers the research questions. We discuss threats
to validity in Section 7 and finally, we conclude and suggest future
work in Section 8.

2 LEARNING OBJECTIVES
For the remainder of this paper, we assume that the reader is familiar
with UML diagrams for describing software designs. In our setting,
we do not put the bar very high on the proper use of details of
the UML notation. For instance, we do not expect full use of the
different kinds of relationship notation provided by class diagrams.
Instead, we want students to:
LO1: Come up with a good decomposition, i.e., a breakdown of

the overall functionality of a system into a set of collabo-
rating components, each of which has a clear, well-scoped,
single responsibility. To this end, we teach students about
role-responsibility stereotypes (as proposed by Wirfs-Brock
[11, 12]). We also explain generic design principles, such

https://doi.org/10.1145/3510456.3514148
https://doi.org/10.1145/3510456.3514148

ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Satrio Adi Rukmono and Michel R. V. Chaudron

as layering, coupling and single-responsibility. Even though
these students have not been trained much in software archi-
tecture design, we believe that inventing a good decomposi-
tion is a key skill in becoming good software designers.

LO2: Abstract the problem away from implementation details. A
typical mistake we see in student works is that they describe
their implementation; they use terminologies like “SQL-DB”,
“Cloud”, or “Browser” in their logical view. Instead, we would
like them to think in more abstract (and hence generic) terms
about the type of functionality such as “User Interface” rather
than “Browser”. This is also related to thinking in terms of
responsibilities.

LO3: Use the notation in a systematic and consistent/uniform way
to represent their design. For this, we prioritize consistency
of use of notation over strictly following the UML standard,
although we subscribe to the value of having the UML stan-
dard. Consistency applies both within a diagram (e.g., classes
should have similar granularity of responsibilities) and inter-
diagram (e.g., lifelines in a sequence diagram should reflect
classes in the class diagram).

LO4: Use separate views into their design. Students have to in-
clude at least a structural/logical view but ideally also some
dynamic/process views of their design. They also need to
separate these conceptual views from implementation de-
tails/physical views.

LO5: Create a good layout. The primary audience of software dia-
grams is human developers. Hence, the ease of understanding
diagrams is vital for their use. In particular, the layout of
diagrams is an essential factor for the ease of understanding
design diagrams. Moreover, we hypothesize that students
with a systematic way of working also create a nice looking
layout. Conversely, a sloppy layout is likely a sign of students
not paying attention to the systematic ordering of concepts.

LO6: Explain the diagrams using text. In our experience, when ask-
ing students to make UML diagrams, they end up neglecting
to explain the diagrams. Hence, in our assignment and the
feedback guidelines, we explicitly guide the students to add
sufficient explanations to their diagrams.

3 RELATEDWORK
Karasneh et al. examined the difference in quality assessment
of students’ UML diagrams conducted by themselves, peers, and
experts [5]. While the assessments differ significantly, the study
found that students and experts use similar features in assessing the
diagrams. It shows that peer feedback can be helpful for software
engineering students and acts as a basis for our study. In addition,
giving feedback to other students’ work can also stimulate students
to reflect on their own design.

A study conducted by Stikkolorum et al. on difficulties and strate-
gies in designing class diagrams suggests that a good diagram layout
may indicate good design [10]. In summary, the study theorised
that a good layout helps student understanding their model and
provides better insight to evaluators. Our findings agree with this
observation and offer more indicators of good design.

Stikkolorum et al. [9] also studied the role of TA in discovering
students’ difficulties in performing software design and guiding
them. This study found that students report difficulties in abstrac-
tion and identifying the responsibility of design elements. In ad-
dition, TA found that students face difficulties using the (UML)
notation correctly, writing report documents, and understanding
the task/deliverable itself. In guiding students, TA explains their
problems using examples, suggesting directions for improvement,
pointing out errors, and suggesting a follow-up meeting after the
evaluation.

Jolak et al. [4] found that UML modelling triggers design think-
ing. They suggested that software designers should not consider
modelling costly because it leads to significant thinking about the
design and better modularity. This finding validates the use of UML
in a software engineering classroom setting.

In a study, Prasad and Iyer [8] asked students to evaluate and
find defects in existing software design diagrams. The study pro-
vided insight on how students think in assessing design diagrams:
students focus primarily on semantic elements in the design and
new elements absent in the design and pay less attention to the
syntactic elements in the design.

Some researchers attempted to use automation in software de-
sign assessment, either as a fully automated grader [1, 2] or as an
assistance tool for both students and evaluators [3]. However, in
both cases, they require a reference solution from the task maker.
This approach cannot work for our studied course, since the projects
are from real world cases that do not (yet) have a working solution.

Studies [9] and [10] serve as a motivation for our study. Some of
our feedback questions were constructed based on what students
and TAs found to be difficult in [9]. Our study is focused on software
design phase compared to [10], which covered both analysis and
design phases.

4 APPROACH
We examine the data from an undergraduate-level software project
course for third-year informatics students. Groups of 5 students
were tasked with performing an iterative, real-case software devel-
opment process. The number of students in each group was decided
by the course’s lecturers. Students were given lectures in software
architecture design, including topics in functional decomposition,
the separation of logical and implementation details, and Wirf-
Brock’s role stereotypes of classes in object-oriented design [11].
Students’ grades in prior, relevant courses (such as programming
and software engineering courses) were taken into account when
dividing them into groups to ensure the uniform distribution of
student skills.

In the group project, students delivered their design documents
(among other deliverables) that included UML diagrams and their
design descriptions in each two-week long iteration. The design
must include use case, class, sequence, and deployment diagrams
corresponding to the scenario, logical, process, and physical view
from Kruchten’s 4+1 view model [6], respectively. Students were
required to use StarUML 1 for drawing UML diagrams.

After the third iteration, student designs were distributed to
their peers. Smaller groups of 2–3 students (“reviewer groups”)

1https://staruml.io

Guiding Peer-feedback in Learning Software Design using UML ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

were then asked to give feedback on the works of two other groups
(“project groups”), i.e., each project group received feedback from
four reviewer groups. We asked smaller groups to give feedback
to avoid project groups assigning the “review task” to individual
members, preventing other members to experience the act of giv-
ing feedback. However, we still want students to give feedback as
pairs to encourage discussions and produce higher-quality feedback
compared to individuals.

Finally, the project groups were asked to select the two feedback
out of four that they considered most helpful and then respond to
the feedback, stressing how they would improve their design in the
next iteration based on the feedback. We left how to select the best
feedback to each group.

To summarise the numbers, 155 students were enrolled in the
course, divided into 31 project groups of 5. Nine project owners
(external entities) provided 15 problem domains. Each domain was
worked on by 1–3 project groups independently. For giving feed-
back, each of the 31 groups was divided in two, with each sub-group
reviewing the works of two other groups—this reviewer group re-
viewed at most one other project group that worked on the same
problem domain. In reality, one of the 62 reviewer groups failed to
give any feedback, causing two project groups to receive feedback
only from three reviewer groups. Other than that, a mix-up in the
distribution of groups caused one project group to receive feedback
from six reviewer groups instead of four, and two other project
groups received three instead of four.

Each project group was asked to select two feedback responses;
however, not all groups responded to the feedback accordingly.
Notably, one project group did not provide any responses, and
three only responded to one feedback response. Another project
group responded to three feedback responses instead.

We collected the feedback and responses via online forms. This
study focuses on the logical view, and as such, the feedback we
asked students to provide revolves around class diagrams. The ques-
tions in the survey forms can be seen in Tables 1 and 2, respectively.
Students were highly encouraged to use English in their design (es-
pecially diagram texts), feedback, and comments. However, English
was not the primary language in this course, hence the first two
questions in the feedback form about the language used.

Table 3 shows the mapping between learning objectives and
feedback questions.

With students’ responses in hand, we manually analyse the data,
especially for free text questions. First, we categorise and quantify
the responses to get a high-level view of the situation and select
notable data points. Then we dive into the data with qualitative
analyses and draw our conclusions.

5 RESULTS
In this section, we discuss the results of our analyses on the feed-
back and responses. We separate our findings into text language,
visual appearances, naming, as well as design quality and document
clarity.

On text language
Before discussing our findings regarding the languages used, we
want to explain the use of English, which is not a primary language

Table 1: Questions for reviewers.

№ Feedback question Question type

1 Are the text in diagrams English? Yes/No
2 Are the text explaining the diagram English? Yes/No
3 Does the architecture have a good decompo-

sition into sub-functions?
Yes/No

4 Please elaborate on the previous question, es-
pecially if you answered ‘No’.

Free text

5 Do all components have a clear responsibil-
ity?

Yes/No

6 Please elaborate on the previous question, es-
pecially if you answered ‘No’.

Free text

7 Are the role-stereotypes given for each com-
ponent correct?

Yes/No

8 Mention explicitly which component(s) you
think should have a different role-stereotype.

Free text

9 Are there components that represent im-
plementation concepts rather than concep-
tual/functionality?

Yes/No

10 Mention explicitly which component(s) you
think represent implementation concepts
rather than conceptual/functionality.

Free text

11 Additional feedback on the quality of the de-
sign

Free text

12 Are class names easy to understand (descrip-
tive of the function of the component)?

Yes/No

13 Are class names specific? Yes/No
14 Additional feedback on class names Free text
15 Are method names easy to understand? Yes/No
16 Are method names specific? Yes/No
17 Additional feedback on method names Free text
18 Does the software architecture document

(SAD) provide enough description of the sys-
tem in natural language?

Yes/No

19 Additional feedback on document clarity Free text
20 How would you rate the visual appearance of

the diagram?
Scale 1–5

21 Give your comment on the visual appearance
& aesthetics of the diagram

Free text

in the course. The primary language, Indonesian, is a relatively
young language. Software engineering learning materials including
the textbooks used in the program are mostly in English, and there
are many terms that cannot be easily translated to Indonesian.
Therefore, students are expected to have intermediate-level English
proficiency, which is ensured by the required English course that
students have to complete in the first year of the bachelor program.

The languages used in the submitted design documents can be
seen in Figure 1. The numbers correspond to the answers to feed-
back questions 1 and 2. Despite encouragement from the lecturers,
23 out of 31 project groups (74.2%) use a language other than Eng-
lish in their UML diagrams. Only six groups (19.3%) use English
at all in their design description, i.e., the narration explaining the
diagrams. Looking into their diagrams, we find that some groups

ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Satrio Adi Rukmono and Michel R. V. Chaudron

Table 2: Questions for project groups aimed to understand
their responses to feedback.

№ Response question Question type

1 Which improvements do you plan to make to
your architecture/design based on the feed-
back?

Free text

2 Do you plan to change anything about the
decomposition of your design? Why?

Free text

3 Do you plan to change any responsibilities of
the classes in your design? Why?

Free text

4 Do you plan to change anything about the
role-stereotypes in your design? Why?

Free text

5 Do you plan to remove/rename any concepts
that represented implementation concepts?
Why?

Free text

6 Did the feedback help you understand role-
stereotypes? Please explain as specifically as
possible.

Free text

7 Do you plan to change any names of classes?
In what way? Why?

Free text

8 Do you plan to change any names of meth-
ods? In what way? Why?

Free text

9 Do you plan to change anything in the ex-
planation in your software architecture docu-
ment (SAD)?

Free text

10 How would you improve the visual appear-
ance of your class diagram?

Free text

11 Was the feedback clear? Free text
12 Is there any feedback missing that you would

like to have received?
Free text

Table 3: The mapping between learning objectives and feed-
back questions.

ID Learning Objective Related Questions

LO1 Come up with a good decomposition 3, 4
LO2 Abstract the problem away from im-

plementation details
5–10

LO3 Use the notation in a systematic and
consistent/uniform way

11–17

LO4 Use separate views into their design 9, 10
LO5 Create a good layout 20, 21
LO6 Explain the diagrams using text 18, 19

mix languages. Further investigation reveals that students found
that some application domain-specific terms are hard to translate
to English.

In reaction to the feedback, 10 project groups out of 23 that use
language other than English (43.5%) comment that they will change
the text into English in the next iteration.

On the visual appearance of diagrams
The reviewers were rather generous in rating the visual appearance
of diagrams (feedback question 20) with an average of 4.40 and a

English
25.8%

Mixed
35.5%

Indonesian
38.7%

Language used in Diagrams

(a) Text in diagrams

English
3.2%

Mixed
16.1%

Indonesian
80.6%

Language used in Narration

(b) Text explaining diagrams

Figure 1: Language used in diagram text and explanation.

standard deviation of 0.71. Figure 2a shows the average rating that
each project group received from their reviewers, with each vertical
bar representing a project group, sorted by average rating received.
Only four groups receive a rating below 4, with one below 3. This
project group with the lowest rating on visual appearance did not
use the required tool StarUML to create their diagrams.

We constructed Figure 2b based on feedback question 21. We cat-
egorised the feedback into keywords and organised the keywords
into positive, neutral, and negative tones. Similar to Figure 2a, each
vertical bar represents a project group, and the groups are ordered
according to the rating to illustrate the correlation between the
variables. From the feedback tone, we can see that even though
the rating was generous, reviewers still gave accompanying nega-
tive remarks besides positive ones, not excepting the groups that
received a perfect rating of 5. There is a considerable positive cor-
relation of 0.62 between the positive feedback tone and the rating
that project groups received, and a similar negative correlation of
-0.61 between the negative feedback tones and the rating. These
correlations indicate the reviewer’s consistency in giving feedback.

Looking into the keywords, most positive remarks are non-
specific, e.g., good, neat, and visually pleasing, without describing
how the diagram is good. Meanwhile, most negative remarks are
more specific, including comments on overlapping lines and layout
or spacing problems. There are 122 positive remarks, 105 negative
remarks, and two neutral remarks given by 61 reviewer groups to
31 project groups. The details of these keywords can be seen in
Figure 2c.

Responding to the feedback on the visual appearance of dia-
grams, 21 of 31 project groups promised that they would try to
improve visual appearance in the next iteration. Twelve of them
will only make one kind of change, five will make three kinds of

Guiding Peer-feedback in Learning Software Design using UML ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

0

1

2

3

4

5

Visual Appearance
Average rating each group received

(a) Average rating

0%

25%

50%

75%

100%

Visual Appearance Feedback Tone
% of positive, neutral, and negative

remarks each group received

positive neutral negative

(b) Feedback tone

Comments on Visual Appearance of Diagrams

29
28

26
8

6
6
6

3
2

1
1

1
1

31
22

18

6
5
5

4
2

2

2

1

1

is good

is neat
visually pleasing

good layout
is simple
good spacing

good lines
complete

[other positive remarks]

good text size
well-structured

[no comment]
is okay

consider
lines

consider spacing

consider layout

text is too small
consider hierarchy

diagram is too small
not in UML standard

consider dimensions

hard to read

too complicated

incomplete

not neat

57[other negative remarks]

easy to read

(c) Feedback keywords

Figure 2: Feedback on visual appearance of diagrams.

change, and the rest will make two kinds of change (Figure 3a).
The changes they planned to make were mainly consistent with
their feedback; however, it is interesting to note that some groups
with the highest rating plan to make more improvements than
those with the smallest rating points. We surmise that this relates
to how serious the groups were in doing the assignment. Groups
with higher intrinsic motivation tend to receive higher ratings and
are willing to improve their works even further. In comparison,
those not working on the tasks seriously tend to receive lower
ratings and are unmotivated to spend more time for improvements
regardless of the feedback. Nevertheless, there is a slight positive
correlation (0.36) between the number of negative remarks that a
group received and the number of improvements they planned to
make.

Looking at the aspects of improvements (Figure 3b), the most
popular planned improvement is on diagram description—which,
curiously, does not fit into the category of visual appearance, and
on diagram alignment. Other aspects include spacing, lines, and
font size.

Planned Visual Improvements
what each group would improve visually

alignment lines spacing
font size description

(a) Planned improvements

1
5
5

6
6

font size
lines

spacing
alignment

description

Planned Visual Improvements
of groups that will improve each aspect

(b) Aspects of improvements

Figure 3: Responses to feedback on visual appearance.

On naming
Most reviewers positively marked class and method names as easy
to understand and specific enough, with 87% to 93% respondents
saying ‘yes’ to feedback questions 12, 13, 15, and 16 (Figure 4).
The percentage of positive, neutral, and negative remarks that each
group received on class andmethod naming can be seen in Figure 5a
and Figure 6a. The diagrams are sorted by the number of negative
remarks each group received in the respective feedback question.

Feedback on Naming

Yes Somewhat No

Are class names specific?

Are class names easy to understand?

Are method names specific?

Are method names easy to understand?

27

27

4

4

29

28

1

1

1

2

Figure 4: Feedback on class and method names.

ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Satrio Adi Rukmono and Michel R. V. Chaudron

When asked to give additional feedback (feedback questions
14 and 17), most negative remarks stated that class and method
names need to be more specific and that some classes and methods
need renaming for language consistency. To a lesser extent, some
suggested following naming conventions and use proper levels of
abstraction in names. We organised the keywords in feedback on
names similar to what we did with the feedback on visual appear-
ance. The resulting categorisation can be seen in Figure 5b and
Figure 6b. An interesting finding from the data is that while there
are significantly more reviewers that give positive remarks, the
“vocabulary” for negative remarks is more “colourful”—in other
words: negative remarks are more nuanced than positive ones.

0%
25%
50%
75%

100%

Class Names Feedback Tone
% of positive, neutral, and negative remarks

each group received

positive neutral negative

(a) Feedback tone

32

23

15

3

3

1

17

1

1

12

11

9

6

3

2

5

are good

are descriptive

are specific

are concise

reflect responsibilities

are following conventions

[no comment]

are not bad

are not confusing

should be more descriptive

should be in English

should be more specific

should follow conventions

should be consistent

reflect implementation detail

[other (−) feedback]

Additional Feedback: Class names ...

(b) Feedback keywords

Figure 5: Feedback on class names.

There is a remarkable correlation of -0.55 between the number
of negative remarks a group received on class names and the rating
they received on the visual appearance of diagrams. Once again,
this correlation may reflect the students’ seriousness in carrying
out software design tasks.

Another notable finding is that some project groups receive
conflicting remarks from different reviewers. For example, one
reviewer mentioned that group X’s class names are descriptive,
while another reviewer commented the opposite. However, a closer
inspection reveals that the negative remarks usually only apply to
a few classes in such occurrences. In contrast, the positive ones
apply to the whole design in general.

After being presented with the feedback, many project groups
comment that they would revise some class (48%) and method
names (55%) even when most groups received positive feedback.

0%
25%
50%
75%

100%

Method Names Feedback Tone
% of positive, neutral, and negative remarks

each group received

positive neutral negative

(a) Feedback tone

Additional Feedback: Method names ...

34

27

13

3

2

3

20

1

11

9

9

6

6

4

3

3

3

3

are descriptive

are good

are specific

are following conventions

are verbs

[other (+) feedback]

[no comment]

are not confusing

should be more specific

should be in English

should be more descriptive

are missing

should follow conventions

are incomplete

are missing parameters

are redundant

are too verbose

[other (−) feedback]

(b) Feedback keywords

Figure 6: Feedback on method names.

On design quality and document clarity
The design quality is reflected by feedback questions 3–11, while
questions 18–19 concern document clarity. We decided to exclude
question 9 because many students misunderstood the question due
to language difficulties, evident from the contrast in answers to
questions 9 and 10. One reviewer acknowledged this confusion by
stating that this question differs from the other Yes/No questions,
where a “Yes” in response to this question denotes a negative point
towards the design, i.e., the existence of components that reflect
implementation concepts is not desirable in the logical view. This
misunderstanding means the collected data would reflect neither
the reviewers’ point of view nor the actual design quality. We, there-
fore, use question 10 as the sole data for the aspect of components
that represent implementation concepts rather than functionality.

We use question 11, free-text feedback on the quality of the de-
sign, to gain what we consider an overview of a project group’s
design quality at a high level (Figure 7). The bars in the figure are
sorted by the percentage of positive remarks each group received.
This order is used to sort the data in subsequent diagrams concern-
ing design quality and document clarity. For simplicity, we consider
that the groups on the left-hand side of the diagrams made a higher
quality design than those on the right.

Getting into the details, we visualised the feedback from ques-
tions 3, 5, and 7, and 18—concerning the quality of decomposi-
tion, clarity of classes’ responsibilities, correctness of assigned role
stereotypes, and the clarity of document text—in Figure 8. The dia-
gram shows a predictable correlation: the better the design quality,
the more likely it is that reviewers answer “Yes” to these questions.

Guiding Peer-feedback in Learning Software Design using UML ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

0%

25%

50%

75%

100%

Feedback Tone on Design Quality

% of positive, neutral, and negative
remarks each group received

positive

neutral

negative

Figure 7: Feedback on overall design quality.

Breaking this down into detail, they correspond to the charts in
Figures 9 to 10. Figure 10 shows the existence of incorrect role
stereotypes and components representing implementation details
in logical view. Again, there are visible correlations between the
quality of the design with feedback tone in the quality of decompo-
sition (0.54), the clarity of classes’ responsibilities (0.72), the number
of “wrong” role stereotypes (-0.39), and the existence of implemen-
tation concepts in logical view (-0.38). However, the correlation
with document text clarity is more subtle at 0.20.

Does the architecture have a good
decomposition into sub-functions?

Do all components have a
clear responsibility?

Are the role-stereotypes given
for each component correct?

Does the software architecture document (SAD) provide
enough description of the system in natural language?

Design Quality (per Project Group)

Yes Somewhat No

Figure 8: More feedback on the aspects of design quality and
document clarity.

Figure 11 depicts how project groups responded to the feedback
on design quality. The relation between the variables can again be
seen: groups towards the right-hand side of the diagram are more
likely to plan revision in each aspect.

In the response text, students tend to ignore comments on the
existence of implementation detail in the logical view. This is to
be expected due to the confusion surrounding the meaning of the
feedback question, as discussed earlier.

Some students discovered that classes could have more than one
role stereotype. Indeed, in real-life cases, it is possible for classes to
exhibit the traits of two roles, as Wirfs-Brock’s examples “informa-
tion holders that compute” or “service providers that cache infor-
mation” [11]. However, this phenomenon in a classroom setting is
likely not caused by deliberate modification to typical stereotypes
but rather a lack of deep understanding of role stereotypes. Never-
theless, it is interesting to see students discover this by themselves,
enriching their knowledge through peer feedback-and-response
activity.

The purpose of writing narration about the design, including
diagram explanations, is to convey the architecture to stakeholders.
However, some students noted that writing the narration forced

0%
25%
50%
75%

100%

Feedback Tone on Decomposition
% of positive, neutral, and negative

remarks each group received

positive neutral negative

(a) Functional Decomposition

0%
25%
50%
75%

100%

Feedback Tone on Responsibility
% of positive, neutral, and negative

remarks each group received

positive neutral negative

(b) Class Responsibilities

0%
25%
50%
75%

100%

Feedback Tone on Doc. Clarity
% of positive, neutral, and negative

remarks each group received

positive neutral negative

(c) Document Clarity

Figure 9: How each group performs in decomposition, class
responsibilities, and document clarity.

them to learn deeper about software design. For example, a student
wrote, “[Having to explain the architecture] made me understand
more about the role-stereotypes.”

Other findings
In their response to the feedback, some students feel that their
feedback is not detailed enough. In addition, it would seem that the
feedback questions did not motivate peers enough to take a deep
look at their design.

From the correlations among the aspects discussed above, we
identified indicators of good software design: visual appearances of
diagrams, good class names, clear description of class responsibili-
ties, the use of role stereotypes, and the ability to separate logical
view from implementation details. These features are included in
Karasneh’s list of features both experts and students use when eval-
uating the quality of UML class diagrams [5] and therefore feasible
to use in giving peer feedback.

ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Satrio Adi Rukmono and Michel R. V. Chaudron

0 0 0 0 0 0 0

2

0

2

0 0

3
4

0
1
0 0

1

3

0

4 4 4

1
0

2

0 0

8

0
0

2

4

6

8

Feedback on Role Stereotype
number of classes with perceived wrong

stereotype per group

(a) Role Stereotypes

001000002000000000
4
00020

12

0000

37

0
0

10

20

30

40

Classes Representing
Implementation Concepts
number of classes per group

(b) Components that represent Implementation
Concepts

Figure 10: The existence of incorrect role stereotypes and
components representing implementation details in logical
view.

Will you revise... (per Project Group)

...functional decomposition?

...class responsibilities?

...class role stereotypes?

...design explanations?

...structural view?

Yes No No response

Figure 11: Response to the feedback in design quality and
document clarity.

Half the students claimed that peer feedback helped them learn
deeper about role stereotypes, as depicted in Figure 12. Elabora-
tion from those who answered ‘Yes’ to the question include: i)
different reviewers provided different point-of-views, ii) reviewers
mentioned specific examples of correct and incorrect stereotypes,
and iii) the feedback helped to determine role stereotypes from the
implicit behaviour of the classes. On the other hand, most that an-
swered ‘No’ said that i) reviews did not state why their stereotypes
are considered correct, and ii) reviews pointed out mistakes but did
not suggest how to fix them.

6 DISCUSSION
In this section we address our research questions and provide an-
swers according to our findings.

Yes: 15

No: 15

No response: 1

The feedback helps understanding
role stereotypes

Figure 12: The effect of feedback on learning

6.1 Answering RQ1: What type of feedback do
students find helpful?

From both quantitative and qualitative analysis of the feedback
and responses, we summarised some features of peer feedback that
students find helpful.

Explicit positive feedback. Our feedback questions did not en-
courage elaboration of positive feedback, i.e., what reviewers find
remarkable about the design. The problem with this is that when re-
viewers do not provide negative remarks, designers cannot be sure
if it means their work is excellent or so-so. In other words, a lack of
negative feedback is not equal to positive feedback. Therefore, we
encourage evaluators (lecturers or TA) and peers to mention what
the group did great when giving feedback explicitly.

This significance of positive feedback is consistent with the
findings of various studies in the field of education. Paterson et
al. [7] provided an extensive review of such studies, noting that
positive feedback makes students enthused and gives them a sense
of achievement. A balanced positive and constructive feedback also
motivates students to improve the quality of their work.

Feedback with specific examples. A student expressed clearly
that “[it] would also be more helpful if [reviewers] have given
more specific examples along with their feedback to clear up some
confusions.” Another student mentioned that the feedback they
received was clear “because [the reviewers] give us some example
in which part we’re bad (sic).” We thus implore reviewers to provide
specific instances of design issues when giving feedback.

Separate feedback on syntax and semantics. We did not explicitly
separate feedback questions into syntactic and semantic aspects. As
a result, some reviewers did not elaborate on the semantic sound-
ness of a group’s design, leaving the designer clueless. However,
relying on student peers to evaluate semantic elements may not be
the best choice since they do not yet possess the required experience
and insight to give valuable comments.

Guiding Peer-feedback in Learning Software Design using UML ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

6.2 Answering RQ2: How to guide students to
give feedback?

Here are our suggestions for stimulating helpful peer feedback on
software design.

Feedback forms must encourage both positive and negative feed-
back. For example, in the aspect of class names, instead of simply
asking whether class names are easy to understand, a feedback
form may ask how many are easy to understand and how many
are not.

Feedback forms must explicitly ask for specific examples. Continu-
ing the example of class names aspect, when saying that some class
names are not descriptive, reviewers must be required to mention
which classes have non-descriptive names. Furthermore, reviewers
can be asked to provide counterexample, e.g., “What would be a
more descriptive class name?”

Vocabularies we learned from this study can be used to refine the
questions in feedback forms. We extracted keywords from review-
ers’ comments that can be used to ask more specific questions
in feedback forms. For example, in the visual appearance of dia-
grams, feedback forms can contain specific questions asking peers
to rate the layout, spacing, line placements, and text size. For class
and method names, we can ask whether the names are specific,
descriptive, concise, consistent, reflecting responsibilities instead
of implementation concepts, and following naming conventions.
In addition, we can also ask whether class names use nouns and
method names use verbs. These specific questions may help review-
ers navigate the diagrams now that they have a concrete idea of
what to expect.

Feedback forms can use some quantifiable design aspects to ap-
proximate design quality. We mentioned that peers might not be
able to assess the quality of semantic elements reliably. However,
the correlations we discussed above can be used to approximate
the quality of a software design. Of note, rather than a direct cause-
and-effect, the correlation may reflect the students’ seriousness in
carrying out the software design assignment.

Figure 13 illustrates how feedback tones in several aspects cor-
relate with the overall design quality. In all charts, the x-axes stand
for the percentage of positive remarks in question 11 (quality of
the design), while the y-axis represent the percentage of positive
remarks in each aspect. An exception to this is the chart for visual
rating (Figure 13b left) in which the y-axis represent a 5-point star
rating, and for role stereotypes (Figure 13c bottom) in which the y-
axis represent the number of classes with incorrect role stereotypes.
The charts show that class names, decomposition, clarity of class re-
sponsibilities, and correctness of role stereotypes are good indicators
of overall design quality.

6.3 Answering RQ3: How do students use the
feedback they receive to improve their
design?

Figures 14 and 15 shows the correlation tendencies between the
number of negative remarks in each evaluated aspects and the
respective improvements students planned to make. In each chart,
the x-axis denotes number of negative feedback that each group

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Class Names

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Method Names

(a) “naming” aspects

2

3

4

5

0% 25% 50% 75% 100%

Visual Rating

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Visual Aesthetics

(b) “visual” aspects

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Good Decomposition

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Clear
Responsibility

0

2

4

6

8

0% 25% 50% 75% 100%

Incorrect Role Stereotypes

(c) “design quality” aspects

Figure 13: Correlation between perceived overall design
quality and positive remarks in several aspects.

received and the y-axis denotes a group’s willingness to revise
their design based on the feedback. We would expect the orange
“no” boxes in the plots to be located more to the left (less negative
feedback→ no plan to revise) and the purple ones (“yes”) to the
right (more negative feedback→ plan to revise).

Students’ plans of improvement are mostly as expected; they
tend to say that they will improve in aspects that they are lacking.
However, we also found that best-performing students planned
improvements despite a lack of negative remarks in certain aspects.
Conversely, some of those who performed poorly made little to
no plan of improvements in some aspects. This may also demon-
strate the number of effort students was willing to give in to the
assignment.

One particular irregularity can be found in responses regarding
the existence of implementation concepts in structural view (Fig-
ure 15 bottom). The first to note is that in this chart, the x-axis uses
logarithmic scale. This is to make sure that the general trend of the

ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Satrio Adi Rukmono and Michel R. V. Chaudron

Figure 14: Negative remarks and willingness to improve in
the aspects of visual appearance, class- andmethod naming,
and decomposition.

chart is visible while including the anomalous data point. in the far
right of the chart, there is a group with 37 classes in their diagram
that reflects implementation view, which is in fact all of the classes
in their design. This is because that particular group submitted a
class diagram of the classes generated by their coding framework,
effectively not representing their design phase.

7 THREATS TO VALIDITY
Construct validity. We did not check all feedback with regards to

the design document. In effect, we cannot be sure if the feedback are
relevant or actually reflect the quality of the design under review.
We asked the students to select the best reviews with the inten-
tion to weed out incongruous reviews and minimize the threat to
construct validity. There is also a possibility for Hawthorne effect,
i.e., students changed their behavior when giving feedback because
they know that they are (and consent to) being studied.

Figure 15: Negative remarks and willingness to improve in
the aspects of class responsibilities, role stereotypes, docu-
ment clarity, and the existence of implementation details in
logical view.

Internal validity. We did not specify how students should select
the best two reviews out of four. Consequently, we do not know if
the selected reviews are indeed the best for supporting the learning
objectives.

Reliability. This study involves several free-text questions re-
sulting in hundreds of sentences to analyze. The categorization
of such sentences into feedback tones were performed by a single
researcher. It would be a better idea to involve other lecturers in
deciding the categorization.

8 CONCLUSIONS
This paper reflected on peer feedback-response activity in a soft-
ware development task for a Software Project course to discover
the type of feedback students find helpful and guide them in giving
helpful feedback. Our study found the following characteristics for
helpful feedback:

Guiding Peer-feedback in Learning Software Design using UML ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

i) Explicit positive feedback.
ii) Feedback with specific examples.
iii) Separate feedback on syntax and semantics.
We also suggested the following guidelines to enhance feedback

forms for stimulating helpful peer feedback:
i) Encourage the reviewer to provide both positive and negative
(constructive) feedback.

ii) Explicitly ask the reviewer to mention specific instances and,
when relevant, provide counterexamples.

iii) Use refined feedback questions instead of asking for general
comments, e.g., specifically ask about the layout, spacing, and
legibility when reviewing diagrams instead of a generic “give
your comment on the diagram”.

iv) Use quantifiable software design aspects, such as diagram lay-
out and class naming, to approximate overall design quality.

Looking back at our feedback questions, we found questions 7–10
to be working well and already fit some of our proposed guidelines.
Question 20 (visual appearance rating) could use more detailed
grading criteria and possibly be broken down into finer aspects of
the visual appearance. Other questions, mainly in pairs of Yes/No
and Free Text questions, need to be improved by incorporating our
guidelines. As concrete, non-exhaustive examples, we provide our
suggested revision to some of our original feedback questions in
Table 4.

Future Work
We asked students to select the two most helpful reviews out of
four they received in the study. However, we did not explicitly ask
why they consider those reviews most helpful. Further studies on
this topic should consider asking directly and precisely why and
which parts of the review designers find helpful.

We have used and suggested checklists for guiding reviews. Al-
though it might help students give specific feedback, this risks that
students think less for themselves, limited to the dimensions the
checklist provided. Evaluators need to keep in mind the balance
between directedness and ingenuity.

We mentioned the limitation of current approaches to software
design assessment automation that require a reference solution. We
suggest using the results presented in this paper to design a more
general automation tool which, while it may not be able to assess
the correctness of the design, can help students by somehow trig-
gering feedback in a mechanism comparable to Bolloju’s grader [3].
For instance, an automation review assistant would select classes
with potentially problematic names from the design and ask the
reviewer to comment on those specific names. For diagram layout,
the assistant could ask questions about intersecting lines such as,
“Here is a line-crossing. Could it be avoided?”

ACKNOWLEDGMENTS
We express our gratitude towards the lecturers, TA, and students of
the observed course for making this study possible and our research
assistant Vania Velda for the help in data preprocessing.

REFERENCES
[1] Weiyi Bian, Omar Alam, and Jörg Kienzle. 2019. Automated Grading of Class Di-

agrams. In 22nd ACM/IEEE International Conference on Model Driven Engineering

Table 4: Examples of suggested feedback questions.

Aspect: class names
Original questions

• Are class names easy to understand?
• Are class names specific?
• Additional feedback on class names

Revised questions
• Mention classes with good names and the reason why you

find it good. The reason can be one or a combination of the
following: descriptive, specific, reflects its responsibilities,
follows a certain naming convention.

• Mention classes with bad names and the reason why you find
it bad. The reason can be one or a combination of the follow-
ing: non-descriptive, non-specific, reflects implementation
concepts, inconsistent across the diagram.

Aspect: visual appearance of the diagram
Original questions

• How would you rate the visual appearance of the diagram?
• Give your comment on the visual appearance & aesthetics
of the diagram

Revised questions
Rate the visual appearance of the diagram in the following aspects
(1: worst . . . 4: best)

• layout of diagram elements
• spacing between elements
• line placements
• font size
• overall visual aesthetics

Languages and Systems Companion, MODELS Companion 2019, Munich, Germany,
September 15-20, 2019, Loli Burgueño, Alexander Pretschner, Sebastian Voss,
Michel Chaudron, Jörg Kienzle, Markus Völter, Sébastien Gérard, Mansooreh
Zahedi, Erwan Bousse, Arend Rensink, Fiona Polack, Gregor Engels, and Gerti
Kappel (Eds.). IEEE, 700–709. https://doi.org/10.1109/MODELS-C.2019.00106

[2] Weiyi Bian, Omar Alam, and Jörg Kienzle. 2020. Is automated grading of
models effective?: assessing automated grading of class diagrams. In MoDELS
’20: ACM/IEEE 23rd International Conference on Model Driven Engineering Lan-
guages and Systems, Virtual Event, Canada, 18-23 October, 2020, Eugene Syriani,
Houari A. Sahraoui, Juan de Lara, and Silvia Abrahão (Eds.). ACM, 365–376.
https://doi.org/10.1145/3365438.3410944

[3] Narasimha Bolloju, Ken W. K. Lee, and Probir Kumar Banerjee. 2011. Formative
and Summative Assessment of Class Diagrams - Development and Evaluation of
a Prototype. (2011), 402–410.

[4] Rodi Jolak, Eric Umuhoza, Truong Ho-Quang, Michel R. V. Chaudron, and Marco
Brambilla. 2017. Dissecting Design Effort and Drawing Effort in UML Modeling.
In 43rd Euromicro Conference on Software Engineering and Advanced Applications,
SEAA 2017, Vienna, Austria, August 30 - Sept. 1, 2017. IEEE Computer Society,
384–391. https://doi.org/10.1109/SEAA.2017.55

[5] Bilal Karasneh, Dave R. Stikkolorum, and Enrique Larios. 2015. Quality Assess-
ment of UML Class Diagrams - A Study Comparing Experts and Students. In
Proceedings of the MODELS Educators Symposium co-located with the ACM/IEEE
18th International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS 2015), Ottawa, Canada, September 29, 2015 (CEUR Workshop Pro-
ceedings, Vol. 1555), Arnon Sturm and Tony Clark (Eds.). CEUR-WS.org, 55–67.
http://ceur-ws.org/Vol-1555/6.pdf

[6] Philippe Kruchten. 1995. The 4+1 View Model of Architecture. IEEE Softw. 12, 6
(1995), 42–50. https://doi.org/10.1109/52.469759

[7] Catherine Paterson, Nathan Paterson, William Jackson, and Fiona Work. 2020.
What are students’ needs and preferences for academic feedback in higher edu-
cation? A systematic review. Nurse Education Today 85 (2020), 104236.

https://doi.org/10.1109/MODELS-C.2019.00106
https://doi.org/10.1145/3365438.3410944
https://doi.org/10.1109/SEAA.2017.55
http://ceur-ws.org/Vol-1555/6.pdf
https://doi.org/10.1109/52.469759

ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Satrio Adi Rukmono and Michel R. V. Chaudron

[8] Prajish Prasad and Sridhar Iyer. 2020. How do Graduating Students Evaluate
Software Design Diagrams?. In ICER 2020: International Computing Education
Research Conference, Virtual Event, New Zealand, August 10-12, 2020, Anthony V.
Robins, Adon Moskal, Amy J. Ko, and Renée McCauley (Eds.). ACM, 282–290.
https://doi.org/10.1145/3372782.3406271

[9] Dave R. Stikkolorum, Francisco Gomes de Oliveira Neto, and Michel R. V. Chau-
dron. 2018. Evaluating Didactic Approaches used by Teaching Assistants for
Software Analysis and Design using UML. In Proceedings of the 3rd European
Conference of Software Engineering Education, ECSEE 2018, Seeon Monastery,
Bavaria, Germany, June 14-15, 2018, Jürgen Mottok (Ed.). ACM, 122–131. https:
//doi.org/10.1145/3209087.3209107

[10] Dave R. Stikkolorum, Truong Ho-Quang, Bilal Karasneh, and Michel R. V. Chau-
dron. 2015. Uncovering Students’ Common Difficulties and Strategies During a
Class Diagram Design Process: an Online Experiment. In Proceedings of the MOD-
ELS Educators Symposium co-located with the ACM/IEEE 18th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS 2015), Ottawa,
Canada, September 29, 2015 (CEUR Workshop Proceedings, Vol. 1555), Arnon Sturm
and Tony Clark (Eds.). CEUR-WS.org, 29–42. http://ceur-ws.org/Vol-1555/4.pdf

[11] Rebecca Wirfs-Brock. 2006. Characterizing Classes. IEEE Softw. 23, 2 (2006), 9–11.
https://doi.org/10.1109/MS.2006.43

[12] Rebecca Wirfs-Brock and Alan McKean. 2003. Object design: roles, responsibilities,
and collaborations. Addison-Wesley Professional.

https://doi.org/10.1145/3372782.3406271
https://doi.org/10.1145/3209087.3209107
https://doi.org/10.1145/3209087.3209107
http://ceur-ws.org/Vol-1555/4.pdf
https://doi.org/10.1109/MS.2006.43

	Abstract
	1 Introduction
	2 Learning Objectives
	3 Related Work
	4 Approach
	5 Results
	6 Discussion
	6.1 Answering RQ1: What type of feedback do students find helpful?
	6.2 Answering RQ2: How to guide students to give feedback?
	6.3 Answering RQ3: How do students use the feedback they receive to improve their design?

	7 Threats to Validity
	8 Conclusions
	Acknowledgments
	References

