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Abstract

Role stereotypes are abstract characterisations of the responsibilities of the building blocks
of software applications. The role a class plays within a software system reflects its design
intention. Wirfs-Brock introduced the following six role stereotypes: Information Holder,
which knows information, Structurer, which maintains object relationships, Service Provider,
which offers computing services, Coordinator, which delegates tasks to others, Controller,
which directs other’s actions, and Interfacer, which transforms information. Knowledge
about class role stereotypes can help various software development and maintenance tasks,
such as program understanding, program summarisation, and quality assurance. This paper
presents an automated machine learning-based approach for classifying the role-stereotype
of classes in Java projects. We analyse this approach’s performance against a manually
labelled ground truth for three open source projects that contain 1,500+ Java classes alto-
gether. The contributions of this paper include: i) a machine learning (ML) approach to
address the problem of automatically inferring role-stereotypes of classes in Object-Oriented
Programming Languages, ii) the manually labelled ground truth, iii) an evaluation of the
performance of the classifier, iv) an evaluation of the generalisability of the approach, and
v) an illustration of new uses of role-stereotypes. The evaluation shows that the Random
Forest algorithm yields the best classification performance. We find, however, that the per-
formance of the ML-classifier varies a lot for different role stereotypes. In particular, its
performance degrades when classifying rarer stereotypes. Among the 23 features that we
study, features related to the classes’ collaboration characteristics and complexity stand out
as the best discriminants of role stereotypes.
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1. Introduction

The concept of “role stereotype” was introduced by Wirfs-Brock to denote ideal types
of well-scoped responsibilities of classes [1]. Such role stereotypes indicate generic respon-
sibilities that classes play in designing a system, such as controller, information holder,
or interfacer. Knowledge about the role stereotypes can help in various software develop-5

ment and maintenance tasks, such as program understanding, program summarisation, and
quality assurance.

Dragan et al. have proposed methods for automatically inferring the role-stereotype of
classes in C++ [2]. Moreno et al. [3] migrated this approach to Java. Both approaches are
based on a collection of expert-designed decision rules applied to classes’ syntactic charac-10

teristics in the source code. This inference of role stereotypes can be seen as an enrichment
of reverse engineering, particularly in uncovering design: Role stereotypes indicate generic
types of responsibility that characterize the type of functionality that class should perform
and the type of interactions a class can have with other types of classes. Hence role stereo-
types are essential clues for the design-intention of classes.15

Several studies [4, 5, 6, 7, 8] have demonstrated the benefits of using stereotypes in
various software development and maintenance activities. These benefits include program
design, program comprehension, quality assurance, and program summarisation. We men-
tion the following as concrete examples of the usefulness of role-stereotypes as demonstrated
in earlier work: Using role-stereotypes in creating layouts of UML class diagrams improves20

the comprehensibility of the diagrams [6, 7, 8]. In addition, Alhindawi et al. [9] show that
enhancing the source code with stereotype information helps improve feature location in the
source code.

We present a machine learning (ML) approach to infer the stereotype of Java classes
automatically. Dragan [2] and Moreno [3] observe that the robustness of their rule-based25

approach leaves room for improvement: the rules of their approach are not ‘complete’: they
do not classify a reasonably large portion of classes of a system. This paper presents an
ML-based classifier that classifies all classes and thus is more robust than existing rule-based
classifiers.

The remainder of this paper first explain the key concept of role stereotype (Section 2)30

and discuss related work (Section 3). Next, we explain our research methodology in Section 4.
As part of this, we explain the taxonomy of role stereotypes used in our study and how they
relate to other taxonomies (Section 4.2). We then discuss the following contributions:

1. We publish the first sizeable validated dataset of 1,547 Java classes and their role stereo-
types. This dataset can serve as a (ground truth) resource for other researchers (Sec-35

tion 4.3).

2. We evaluate the performance of our approach (Section 5). We infer which features are
most important for classifying stereotypes and which machine learning algorithm works
best (Section 6).

3. We evaluate the generalisability of our approach (Section 7). The earlier work by Dragan40
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[2] used only 45 classes for validating their approach for C++. The paper by Moreno [3]
does not include validation of its performance.

4. We use the perspective of role stereotypes to gain novel insights into software structure
and its evolution (Sections 8 and 9).

We then follow up with the threats to validity in Section 10. Finally, Section 11 concludes45

our paper and provides potential future work.

2. Class Role Stereotypes

Wirfs-Brock [10] proposed an object-oriented design approach based on the notion that
each software object should have a well-defined responsibility to play one of a few generic
roles in a system’s design. Wirfs-Brock classified the roles of software objects into six50

stereotypes:

(IH) Information Holder : objects designed to know certain information and provide that
information to others.

(ST) Structurer : objects that maintain relationships between objects and information about
those relationships.55

(SP) Service Provider : objects that perform work and offer services to others on demand.
Structurers might pool, collect, and maintain groups of objects.

(CO) Coordinator : objects that do not make many decisions but delegate work to other
objects in a rote or mechanical way.

(CT) Controller : objects designed to make decisions and control complex tasks.60

(IT) Interfacer : objects that transform information and requests between distinct parts of
a system. It can be a user-interface object that interacts with users. An Interfacer
can communicate with external systems or between internal subsystems.

This taxonomy aims for orthogonal non-overlapping categories. However, there may be
situations where a class can play different roles towards different collaborators.65

It is crucial to recognize that Wirfs-Brock suggests using role stereotypes while designing
a system. In our study, we aim to establish role stereotypes based on the implementation of
a system. In general, the classes that end up in implementation are not ideal. For example,
they may mix two or more responsibilities.

3. Related Work70

Dragan et al.[11] proposed an automated tool to detect stereotypes of methods in the
C++ programming language. They define a taxonomy of methods, including Structural (Ac-
cessor and Mutator), Collaborative, and Creational. They propose several rules to determine
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method stereotypes based on the type of the method, the return type, and how the method
modifies the class’s state. On top of their method for classifying method stereotypes, Dragan75

et al. create rules to determine class stereotypes [2]. The proposed class stereotypes are
Entity, Minimal Entity, Data Provider, Commander, Boundary, Factory, Controller, Pure
Controller, Large Class, Lazy Class, Degenerate, Data Class, and Small Class. While several
of these seem close to Wirf-Brocks’s, the Dragan classification is presented as being derived
empirically from studying 21 open source projects.80

The rules in Dragan’s approach consist of a collection of conditions on the quantities of
method stereotypes ; e.g. #Mutators > 2×#Accessors. These conditions include thresholds
based on a mix of theoretical arguments and statistical techniques [12]. Dragan states that
“The rules for stereotype identification are subjective and thresholds might vary depending
on differences in subject’s interpretations.” [2] Moreover, these rules leave a large number85

of classes in software systems unclassified. They do not cover the spectrum of possible
combinations of method stereotypes that occurs in practice.

Moreno and Marcus propose a method for identifying class stereotypes in the Java pro-
gramming language based on the work of Dragan [3]. They adapted their procedures [2] and
provided additional method and class stereotypes. Both classifier approaches by Dragan90

and Moreno’s rules are not disjoint: different rules each may assign different stereotypes to
a single class. Unfortunately, Moreno’s subsequent research has used this classifier chiefly
for automatically generating summaries of classes in natural language [13] and seems not to
have continued improving its performance.

Budi et al. [14] built an automated tool to detect design flaws based on design stereotypes.95

They use a taxonomy of 4 role-stereotypes, different from Wirfs-Brock: Boundary, Control,
Regular Entity, and Data Manager. For these design stereotypes, some rules describe how
these stereotypes should be allocated to the typical layers of 3-tiered software architectures
and how they are supposed to collaborate. The authors used SVM to automatically labels
classes into categories. They then used rules about the relationship between the stereotypes100

to detect potential design flaws in the system.
The Gang-of-Four (GoF) design patterns [15] also represent idealized software design

patterns. However, there are essential differences between the GoF patterns and the design
stereotypes that we consider: Firstly, only a tiny portion of classes in a system are part
of GoF design patterns. Whereas in the design philosophy of Wirfs-Brock, each class in105

a system should play at least one of her proposed stereotype roles. Secondly, GoF design
patterns are defined as specific ways in which individual types of classes collaborate. In con-
trast, Wirfs-Brock’s stereotypes are the property of individual classes. Finally, we mention
one approach by Fontana et al. [16] that uses machine learning to identify design patterns
in source code.110

4. Methodology

Figure 1 shows an overview of our research methodology. First, we select three case
studies and collect their source code (Step 1). Second, we define and establish a ground
truth (Steps 2 & 3). Then, we extract features from the source code that are to be used by
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the machine learning algorithms (Step 4). After that, we experiment with various machine115

learning algorithms (Step 5). Finally, we evaluate the performance of the machine learning
algorithms (Step 6) and then study the evolution of software structure concerning the role
stereotypes (Step 7). In the following subsections, we elaborate on these steps in more detail.

Data collection1

De�ne role

stereotype criteria

Manual labeling &

consolidation

2

3

Feature

extraction
4

Experiment with

machine learning

algorithms
5

Evaluate

classi�cation
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6

Study the
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7

Figure 1: Research methodology

4.1. Data Collection

This research uses three open-source software systems as our case studies: K-9 Mail2,120

Bitcoin Wallet3, and SweetHome3D4. Table 1 shows descriptive information about the
projects. K-9 Mail and Bitcoin Wallet are Android applications hosted in GitHub, while
SweetHome3D is a pure-Java application hosted in SourceForge.

Table 1: Description of OSS projects used in this study
#Class is calculated at the studied version. #Release, #Contributor and #Star are retrieved at the time

of writing this paper

# OSS project Version Released #Class #Release
#Cont-

ributors
#Stars Type

1 K-9 Mail v5.304 Nov. 10, 2017 779 367 202 4276 mobile/Android

2 Bitcoin Wallet v6.31 Oct. 1, 2018 222 274 26 1705 mobile/Android

3 SweetHome3D v5.6 Oct. 25, 2017 546 46 n/a 4.7/5.0 desktop

These projects are chosen for this study because of the following reasons:

2https://github.com/k9mail/k-9/tree/1a12b18f0c4a452b74941340179735f0383bd1fb
3https://github.com/bitcoin-wallet/bitcoin-wallet/releases/tag/v6.31
4https://sourceforge.net/projects/sweethome3d/files/SweetHome3D-source/SweetHome3D-5.

6-src

5
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• They use Java as the primary programming language,125

• They are active open source projects: they exist for many years, and usable released
versions are available. These projects are not student projects.

• They vary in size (#Class), domain, and technology (Android & pure-Java), and the
sizes are beyond ‘toy’-projects.

• They are from domains that non-experts can understand.130

We downloaded the source code of these projects from the corresponding GitHub and Source-
Forge links. We found a small number of “nested” classes that might interfere with their
outer classes’ feature extraction. Therefore, the next step was to extract these nested classes
into independent classes. The extraction process was performed as follows. Firstly, the
source code was parsed using srcML [17]. For a given source code, srcML creates a list of135

classes, including nested classes and their details, in a standardized XML representation.
Then, we used XPath queries to generate all classes from the saved XML file. As a result,
every nested class was extracted into a separate Java file. Finally, we used checkstyle 5

to remove unused import statements in every class to obtain the actual number of import
statements used and the number of lines in the class. The scripts for automating this ex-140

traction process are included in the replication package of this paper [18]. After these steps,
we obtained a total of 1,547 Java classes over three cases.

4.2. Ground Truth, part 1: Criteria for Role Stereotypes

To produce a ground truth for machine learning, we first establish criteria to be used by
human experts for manually classifying classes into role stereotypes. The authors obtained145

the initial criteria by studying the descriptions by Wirfs-Brock [10]. Then the criteria were
refined and calibrated in follow-up meetings where the authors had assessed additional sets
of classes (details in section 4.3). The criteria can be divided into three categories: i)
Criteria regarding characteristics of classes, ii) Criteria regarding the relationship between
role stereotypes, and iii) Other criteria. We discuss each of these next.150

4.2.1. Criteria regarding characteristics of classes

These criteria focus on the intrinsic (static) properties of classes. We take the Structurer
stereotype as the first example: Table 2 shows the criteria used to characterize Structurer
classes. In this particular case, we look into data types of attributes, library use, and
content of methods inside a class to get an impression of whether the class is capable of155

organizing/manipulating a collection of objects. As a second example, the Information
Holder may include persistence mechanisms (files or databases). Other class properties such
as class name and getter/setter methods are used for other role stereotypes. A complete list
of the criteria for all stereotypes can be found in the replication package of this study [18].

5https://github.com/checkstyle/checkstyle
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Table 2: Properties of a Structurer class

What makes a class a Structurer?

- May contain “user defined object” type as attributes

- May extend Java’s Collection framework or equivalent

- Has method(s) to maintain relationships between objects

+ methods that manipulate the collection such as sort(),

compare(), validate(), remove(), updates(), add(), etc.

+ methods that give access to a collection of objects such as

get(index), next(), hasNext(), etc.

Some of the criteria are somewhat similar to the rules developed by Dragan and Moreno.160

For example, we both consider getter and setter methods to indicate the Information Holder
stereotype (in our classification) and Entity/Data Provider -type (in Dragan’s classification).
However, different from Dragan and Moreno, our criteria also consider other features, such
as persistence functionality.

4.2.2. Criteria regarding the relationship between roles165

Wirfs-Brock mentions that “the roles an object plays imply certain kinds of collabora-
tions.” [10] We form a set of criteria that look at the collaborations stereotypes have with
other classes. From Wirfs-Brock’s theory of role stereotypes and collaborations, we come up
with the graph in Figure 2. The graph demonstrates common relationships between differ-
ent role stereotypes. It shows, for example, that Information Holders are commonly used170

by Controllers, Service Providers, or Structurers but not by Coordinators or Interfacers.
Hence, the presence or absence of relations can be used as a criterion in deciding a class’s
possible roles.

The following are additional examples of criteria on the relationships between roles: A
Structurer may link to several Information Holders ; a Service Provider can store informa-175

tion by collaborating with Information Holder and Structurer classes. As an intermediary
between different layers of a system, an Interfacer might collaborate with Coordinators and
Service Providers in each layer to conduct a cross-layer task; Controller classes often control
this kind of task.

4.2.3. Other Considerations180

We defined additional criteria aimed at essential differences in behaviour between differ-
ent role stereotypes. For example, both Service Provider and Controller classes may include
some control-flow logic. The design intention of these classes suggests that a Controller ’s
decision should affect a broader control flow of the system. In contrast, decisions made by
a Service Provider should primarily affect the flow within the class itself.185

Secondly, we draw special attention to Android case projects. In particular, Android
applications are built upon Android frameworks which encapsulate low-level functionalities
of the Android OS. Thus, some Controller, Structurer, and Interfacer classes at the UI and

7



pr
e-
pr
in
t

Information HolderService Provider

Coordinator Controller

Interfacer

Structurer

uses

uses

uses

extends

uses

controls

uses

extends

extends

extends

extends

uses

uses

uses

returns

uses

delegates

stores|organizes

notifies

extends

Figure 2: Relationship between role stereotypes

activity management level and collaboration between them might be hidden away. The
roles and responsibilities of those classes that extend or implement these base functionalities190

might be overlooked. The experts pay extra attention by reviewing roles and collaborators
of its ancestor (Android) classes, mainly from Android’s API reference6.

Lastly, sometimes a class may carry more than one role. This possibility of multiple roles
is also discussed by both Wirfs-Brock [10] (p.4) and Dragan [2]. In this case, experts discuss
and choose one most prominent role for this class, and if any secondary role is identified,195

this is also recorded.

4.3. Ground Truth, part 2: Manual Labelling and Consolidation

We used an iterative process to establish agreement on criteria and how to apply them.
Initially, we randomly chose 20 classes for each project. Then, two of the authors and one
non-author PhD student manually labelled these classes independently. They scrutinised200

each other’s work, discussed any differences in classification, and refined the criteria based
on this discussion. These steps were repeated two more times on K-9 Mail, as this is the
case with the most significant number of classes, until the criteria seemed sufficient or
saturated. Next, two of these people labelled all the remaining classes. A final discussion
round took place between the two graders to resolve disagreements and hard-to-stereotype205

cases. Afterwards, two master students, both are authors, reviewed the resulting data. These

6https://developer.android.com/reference/
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authors did not participate in earlier manual labelling tasks. The whole manual labelling
process took about 100 hours in total—approximately 45 hours by each primary grader and
10 hours by the extra grader—spread out over three months. Ultimately, we established a
ground truth of 1,547 labelled classes, covering all three cases [18]. Table 3 summarises the210

distribution of all classes in the ground truth by projects and by role-prototype.
Comparing to the approach proposed by Dragan et al. [2] and Budi et al. [14], some

of their features are similar to our features, i.e., numMethod, setters, getters, and numOut-
boundInv. However, they only considered a smaller number of features, and most of our
features were not considered in their work.215

Table 3: The distribution of role-stereotypes in each project under study

Project CO CT IH IT SP ST Total

K-9 Mail 79 20 231 77 323 49 779

Bitcoin Wallet 2 5 83 62 57 13 222

SweetHome3D 21 38 227 63 159 38 546

Total 102 63 541 202 539 100 1547

4.4. Feature Extraction

Our classification is based on a static analysis of the Java source code of a system.
First, we extract the features using the srcML tool [17]. For a given source code, srcML
creates a list of classes and their details in a standardised XML representation. Then, the
values of features are calculated by using XPath queries. We chose to use 23 source code220

features that correspond to the criteria used in the manual classification (see Section 4.2).
In Tables 4 to 8, we list the features (F) and a short subjective opinion on their relevance to
classifying different role stereotypes. The features are categorised into five categories (C),
i.e., Accessibility, Complexity, Functionality, Naming Convention, and Collaboration.

9
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№ Feature Name Data Type Explanation

F01 classPublicity string
(‘default’,
‘private’,
‘protected’,
or ‘public’)

The access modifier of the class. We assume
that Service Provider and Information Holder
classes might offer public access so that other
classes can collaborate with them.

F02 numPublicMethods integer The number of public methods inside the
class. We assume that an Information Holder,
an Interfacer, a Service Provider, or an Inter-
facer class might have many public methods.

F03 numPrivateMethods integer The number of private methods inside a class.
We assume that a Controller, Coordinator,
and Service Provider might distribute the job
on separate methods inside the class.

F04 numProtectedMethods integer The number of protected methods inside a
class. We assume that a Controller, Coordi-
nator, and Service Provider might distribute
the job to separate methods inside the class.
These methods might still be used or overrid-
den by any sub-classes.

10
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№ Feature Name Data Type Explanation

F05 loc integer The number of lines in the class’ source code.
We assume that the Controller and Service
Provider stereotype will have more lines of
code than the other.

F06 numIfs integer The number of conditional statements in the
class body, i.e., the if/if-else and switch

statements. Controller classes might use lots
of conditional statements to make decisions
and to control workflows.

F07 numParameters integer The total number of parameters in all methods
in the class. We assume that methods in a
Service Provider or a Coordinator class might
have many parameters.

F08 numAttr integer The number of attributes declared in the class.
We assume that an Information Holder class
might have many attributes.

F09 numMethod integer The number of methods declared in the class
(constructors are excluded). We assume that
Service Provider and Coordinator classes have
many methods.

F10 setters integer The number of methods which names start
with set-. We assume that this method is a
setter method, i.e., the method that modifies
a variable in an Information Holder.

F11 getters integer The number of methods which names start
with get-. We assume that this method is a
getter method, i.e., the method that accesses
variable values in an Information Holder class.

11
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Table 6: C3: Functionality features, aiming at detecting specific functions that a class may have.

№ Feature Name Data Type Explanation

F12 isPersist boolean Indicates whether a class has persistence fea-
tures, i.e., implements a Serializable in-
terface or importing database connectivity li-
braries. We assume that Information Holder
classes are more likely to employ persistence
features.

F13 isCollection boolean Indicates whether a class is a subclass of Java’s
collection library. We assume that a Struc-
turer might need it to maintain relations be-
tween objects.

F14 isClass boolean Indicates whether the source code file is a
class. We assume that a class can represent
all of the role stereotypes.

F15 isEnum boolean Indicates whether the source code is a Java
enum. We assume that the enum type can
represent an Information Holder.

F16 isAbstractClass boolean Indicates whether a class is an abstract class.

F17 isStaticClass boolean Indicates whether a class is a static class. We
assume that a static class can represent a Ser-
vice Provider or an Information Holder.

F18 isInterface boolean Indicates whether the source code file is a Java
interface. We assume that an Interface can
provide methods that a Service Provider or a
Structurer must implement.

Table 7: C4: Naming Convention features, for detecting specific naming conventions in the class name.

№ Feature Name Data Type Explanation

F19 numWordName integer The number of words in the class name. We
assume that Information Holder and Struc-
turer role stereotypes have a simple short
name, while the others might have a longer
name.

F20 isOrEr boolean Indicates whether the class name ends with -
or or -er. We believe a Controller or a Service
Provider class is more likely to have a name
that ends with -or or -er.

F21 isController boolean Indicates whether the class name ends with
-Controller. We believe that those classes
are more likely to be Controller classes.

12
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Table 8: C5: Collaboration features, indicating the level of collaboration between a class and other
classes.

№ Feature Name Data Type Explanation

F22 numImports integer The number of import statements in the class.
Classes carrying the roles like Controller, Co-
ordinator, Interfacer, and Service Provider
might need to collaborate with many other
classes. Thus, we assume that they might have
many import statements.

F23 numOutboundInv integer The number of invocations to methods out-
side of itself. We assume that the Coordina-
tor, Controller, and Interfacer invoke many
methods outside of itself.

4.5. Machine Learning Classification Experiments225

We experiment with three machine learning algorithms: Random Forest (RF), Multino-
mial Näıve Bayes (MNB), and Support Vector Machine (SVM). These algorithms are widely
used in machine learning research and provide good performance on various applications.
We do not conduct experiment with neural network techniques because they require very
large training sets (10’s of thousands of objects) which we do not yet have. We use strati-230

fied 10-fold cross-validation to evaluate the performance of each algorithm, measured using
Precision, Recall, F1-Score, and Matthews Correlation Coefficient (MCC).

We perform two experiments for machine learning algorithms. In the first experiment,
we analyze which algorithm provides the best performance in classifying all role stereotypes.
For this, we use each role stereotype as a separate classification category. Hence this consti-235

tutes a multi-class classification. Furthermore, we explore using the SMOTE [19] resampling
technique to handle the imbalanced distribution of role stereotypes. Recent software engi-
neering studies have used SMOTE to handle their imbalanced dataset (e.g., [20, 21]). When
applied, the oversampling technique resamples all role-stereotypes but the majority one. We
use SMOTE exclusively on training sets for all features. Finally, we compare the perfor-240

mance between using the regular and the SMOTE resampling technique.
In the second experiment, we examine which features are essential for classifying each

role stereotype. For this, we use only one machine learning algorithm: the one that came
out best in the first experiment. Here, we perform binary classifications for each stereotype,
i.e., we use two categories: i) that specific stereotype, and ii) all other stereotypes together.245

We then evaluate the importance of the features in this classification. For this, we use the
Scikit-toolkit for machine learning and its built-in method to compute feature importance
based on Gini scores [22]. We can get this score by calculating a node’s importance for each
feature split divided by the importance of all nodes in the tree, then normalize it by the
sum of all feature importance values.250

13
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4.6. Generalizability of Trained ML Classifier

We study the trained machine learning classifier’s generalizability by evaluating the use of
different software projects as training data to classify the other remaining software projects.
We use the most performant machine learning algorithm in the previous experiment and use
different software projects as the training data and measure their performance.255

4.7. Studying the Evolution of Role Stereotypes

To understand the evolution of a software structure concerning role stereotypes, we select
a sizeable number of versions from our three cases. We apply the classifier to the source code
from these versions and perform quantitative analyses and measurements on the resulting
data. We also employ exploratory data visualisation techniques to discover insights on the260

dynamics of these software projects.

5. Experiment Results

This section presents the results of our experiment on the CRI classifier.

5.1. Multi-role Classification of all Stereotypes

In the first experiment, we evaluated the dataset of aggregated data (of 1,547 classes)265

from our three cases K-9 Mail, SweetHome3D, and Bitcoin Wallet. In particular, we calcu-
late Precision, Recall, F1 Score, and MCC using 10-fold cross-validation. Then we compare
this result with the performance reported in our previous work that used only the K-9 Mail
dataset [23]. We use 1000 trees in the Random Forest classifier to handle the large number
of features that we used. Table 9 demonstrates the performance result in these two datasets.270

Table 9: Performance comparison of the additional dataset

Dataset Classifier Method Precision Recall F1-Score MCC

All

RF 0.64±0.07 0.67±0.07 0.64±0.06 0.55±0.09

MNB 0.56±0.04 0.56±0.06 0.55±0.05 0.40±0.07

SVML 0.60±0.05 0.64±0.06 0.60±0.06 0.49±0.09

RF (SMOTE) 0.66±0.07 0.62±0.08 0.63±0.08 0.50±0.11

MNB (SMOTE) 0.58±0.04 0.55±0.07 0.55±0.06 0.40±0.08

SVML (SMOTE) 0.63±0.06 0.58±0.09 0.59±0.08 0.45±0.10

K-9

RF 0.64±0.09 0.67±0.06 0.63±0.06 0.52±0.08

MNB 0.53±0.10 0.51±0.09 0.49±0.10 0.33±0.12

SVML 0.54±0.07 0.60±0.06 0.55±0.06 0.41±0.08

RF (SMOTE) 0.65±0.08 0.62±0.08 0.62±0.09 0.49±0.10

MNB (SMOTE) 0.54±0.11 0.46±0.08 0.45±0.10 0.31±0.10

SVML (SMOTE) 0.56±0.08 0.51±0.07 0.52±0.08 0.36±0.10

Table 9 shows that Random Forest outperforms MNB and SVML and remains the best
classification algorithm. There is an increase in the performance of the Random Forest using
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all three projects compared to the performance using only K-9 Mail. This increase is possibly
due to the addition of training data for less frequently appearing role-stereotypes, such as
Controller and Structurer. On the other hand, we also observed no significant differences in275

applying SMOTE resampling technique in both cases. We argue that, by using the SMOTE
resampling technique, the number of the dataset of each role in both cases will still be
equal. Moreover, the increase of the dataset’s size from using only K-9 Mail to using all
three projects may not be significant enough to increase the classifier’s performance.

5.2. Single Role (Binary) Classification280

In the second experiment, we run a binary classification on each role stereotype. From our
original dataset, we create six new datasets (one for each role-stereotype) that use exactly
two labels: one label for the role-stereotype at hand and one label Other representing
the combination of all remaining role-stereotypes. As for the machine learning algorithm,
we use Random Forest, which offered the best performance in the multi-role classification285

experiment from Section 5.1. Table 10 shows the results for 10-fold cross-validated evaluation
for each role-stereotype classification using the imbalanced K-9 Mail dataset following the
previous work [23] and both imbalanced and SMOTE-resampled of our three cases extended
dataset.

Comparing imbalanced K-9 Mail dataset (Table 10a) and imbalanced three cases dataset290

(Table 10b), we can see the increase of performance in the least frequent role-stereotypes,
namely, Controller. The addition of two other projects in the dataset increased the number
of least frequent stereotypes that led to the performance increase. On the other hand, the
addition of the two projects did not increase the performance of the already most frequent
dataset, namely, Information Holder and Service Provider.295

On the imbalanced dataset of all cases (Table 10b), based on an interpretation of
the MCC score in previous studies [24, 25], the classifier has a very good performance
(MCC score = 0.70) in detecting Information Holders, moderate (MCC scores between 0.40
and 0.50) at detecting Controllers, Interfacers, and Service Providers, fair (MCC score =
0.21) at detecting Structurers, and low (MCC score = 0.14) at detecting Coordinators. We300

suspected that the different number of training sets for each classifier contributed to this
varying performance.

Meanwhile, the use of SMOTE resampling technique (Table 10c) increased the perfor-
mance of the three role-stereotypes, namely, Coordinator, Interfacer, and Structurer. These
three role-stereotypes could be found moderately frequent in the dataset among other role-305

stereotypes. We also can see a substantial drop in the least frequent role-stereotypes, i.e.,
Controller. For the remaining two frequent role-stereotypes, namely, Information Holder
and Service Provider, there is no substantial change of performance. These results demon-
strated that the effects of using SMOTE resampling technique are varied across different
role-stereotypes.310
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Table 10: Single role (binary) classification result

Role Precision Recall F1-Score MCC

CO 0.42±0.41 0.23±0.28 0.28±0.31 0.28±0.31

CT 0.00±0.00 0.00±0.00 0.00±0.0 0.00±0.00

IH 0.86±0.11 0.71±0.11 0.78±0.09 0.70±0.13

IT 0.32±0.41 0.08±0.10 0.12±0.16 0.13±0.20

SP 0.70±0.09 0.64±0.15 0.65±0.10 0.44±0.13

ST 0.36±0.42 0.18±0.29 0.21±0.27 0.22±0.29
(a) Imbalanced K-9 Mail dataset (rerun from [23])

Role Precision Recall F1-Score MCC

CO 0.17±0.33 0.14±0.29 0.15±0.30 0.14±0.30

CT 0.68±0.38 0.42±0.37 0.46±0.33 0.49±0.32

IH 0.87±0.08 0.72±0.09 0.79±0.07 0.70±0.10

IT 0.64±0.30 0.37±0.26 0.44±0.26 0.43±0.26

SP 0.71±0.09 0.61±0.13 0.65±0.08 0.49±0.11

ST 0.55±0.46 0.11±0.14 0.17±0.18 0.21±0.21
(b) Imbalanced three cases dataset

Role Precision Recall F1-Score MCC

CO 0.26±0.17 0.24±0.26 0.24±0.21 0.20±0.22

CT 0.27±0.20 0.42±0.36 0.30±0.23 0.29±0.25

IH 0.82±0.09 0.78±0.09 0.79±0.06 0.69±0.09

IT 0.58±0.18 0.58±0.21 0.56±0.15 0.50±0.17

SP 0.67±0.10 0.68±0.12 0.67±0.07 0.49±0.11

ST 0.22±0.13 0.20±0.15 0.20±0.13 0.16±0.13
(c) SMOTE-resampled three cases dataset

The Random Forest classifier gives the best performance in classifying
role-stereotypes. The addition of classes from two more projects to the
dataset increases the performance of the least frequent role-stereotype
binary classifiers, namely Controller. The use of the SMOTE resampling
technique seems to increase the performance of the binary classifier for
moderately frequent role-stereotypes. The performance of the most fre-
quent role-stereotypes is not substantially different when using SMOTE
resampling. As a whole, it cannot be concluded that the use of SMOTE
resampling always provide better performance.
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5.3. Comparison to Existing Classifiers

In this section we compare our approach to the main previous work by Dragan and
Moreno. This comparison was extracted from our previous work [23] to keep this paper
self-contained. To enable comparison, we first mapped the categories from Dragan’s [2] and315

Moreno’s [3] taxonomy onto Wirfs-Brock’s [1]. It is worth noting that Moreno’s stereotypes
were adapted from Dragan’s. For the mapping, we consider the equivalence of Moreno’s
JStereoCode7 results with our own manually labeled ground-truth. We also take into ac-
count how the definitions of the categories correspond to each other. This was not obvious
because JStereoCode categories concern implementation characteristics while Wirfs-Brock’s320

involve conceptual responsibilities. Table 11 shows the descriptions of Dragan’s & Moreno’s
stereotypes [2, 3] and their mapping to Wirfs-Brock’s.

Table 11: Class stereotype taxonomy of Dragan & Moreno [2, 3]

Class Stereotype in[2] in[3] Description WB-Role-stereotype

Entity D D Encapsulated data and behavior. Keeper of the data
model and business logic.

Information Holder

Minimal Entity D D Trivial Entity that consists entirely of accessor and mu-
tator methods.

Information Holder

Data provider D D Entity that consists mostly of accessor methods. Information Holder

Data class D D Degenerate behavior—it has only get and set methods. Information Holder

Pool D Consists mostly of class constants and a few or no meth-
ods.

Information Holder

Commander D D Entity that consists mostly of mutator methods Service Provider

Boundary D D Communicator that has a large percentage of collabo-
ration methods,,a low percentage of controller- and not
many factory methods.

Service Provider

Boundary+Data Provider D Boundary class that provides access to its state. Service Provider

Boundary+Commander D Boundary class that provides access for modifying its
state.

Service Provider

Factory D D Consists mostly of factory methods. Service Provider

Controller D D Controls external objects—the majority of its methods
are controllers and factories.

Controller

Pure Controller D D Consists entirely of controller and factory methods. Coordinator

Large class D D Contains a high number of methods that combine mul-
tiple roles, i.e., it consists of accessors, mutators, collab-
oration and factory methods.

Not suitable to any role

Lazy class D D Its functionality cannot be easily determined. It consists
mostly of incidental- and get- or set methods.

Not suitable to any role

Degenerate class D D Very trivial class that does very little - it consists mostly
of empty- and get- or set methods.

Not suitable to any role

Small class D A class that only has one or two methods. Not suitable to any role

7Archived at http://web.archive.org/web/20160207063920/http://www.cs.wayne.edu/~severe/

JStereoCode/
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5.3.1. Mapping of Taxonomies

We applied the JStereoCode tool to K-9 Mail. Out of the 779 classes of our K-9 Mail
dataset, 193 were successfully labelled according to the taxonomy by Dragan & Moreno.325

The remaining classes were either not classified successfully by JStereoCode or (Java) inter-
faces, which do not provide functionalities and, thus, do not correspond with Wirfs-Brock’s
stereotypes. Next we looked up in our ground truth which stereotypes these classes belong
to in our taxonomy. Table 12 shows the summary of this. Cells in this table are shaded if
we map them onto each other based on theoretical grounds.330

Table 12: Empirical comparison between JStereoCode [3] and Wirfs-Brock [1] based on our ground truth
for K-9

Stereotype CT CO IH IT SP ST

Entity 0 0 1 0 1 0

Minimal Entity 0 0 3 1 0 1

Data Provider 1 0 4 0 1 1

Data Class 0 0 10 0 0 0

Pool 0 0 9 0 2 0

Commander 0 0 1 0 6 2

Boundary 1 20 0 0 39 2

Boundary + Data Provider 0 1 0 0 3 2

Boundary + Commander 2 0 0 0 5 1

Factory 0 0 2 0 10 2

Controller 0 0 0 0 0 0

Pure Controller 0 0 0 0 0 0

Large Class 0 0 0 0 0 0

Lazy class 0 2 0 0 5 1

Degenerate 0 0 43 0 7 1

Table 11 shows that Moreno provides more specific stereotypes for data and entity classes:
Entity, Minimal Entity, Data Provider, Data Class, and Pool. Table 12 shows that the
empirical- (highest numbers) and theoretical (shaded cells) approaches agree on that these
stereotypes map onto Information Holder.

Next, we establish correspondence between Commander, Boundary (and its refinements335

+ Data Provider and + Commander) to Service Provider. This is suggested by the empirical
numbers, and there is reasonable theoretical match to justify this mapping: both aim to
do offer some service. However, this may not be a perfect correspondence, as 20 out of 59
(39%) of the Boundary classed are mapped onto Coordinators.

Given that JStereoCode does not find any Controllers or Pure Controllers, we map these340

onto Controller and Coordinator stereotypes respectively based on theoretical grounds. For
Controller, the definitions seem to match. For the Pure Controller stereotype, Dragan [2]

18



pr
e-
pr
in
t

explained that this stereotype is a candidate for the design smell “God Class” by combining
too much functionality. This characteristic of lumping functionality is mostly present in the
Coordinator.345

The 43 classes that are labelled Degenerate by JStereoCode only hold information with-
out providing many methods. For this reason, these classes were classified as Information
Holders in our taxonomy.

There are no theoretical grounds to map the categories Large Class and Lazy Class to
any of our stereotypes. These categories are design smells rather than role stereotypes8.350

Their paper does not explain why these categories are used. Our hypothesis is that their
reasoning is that classes that have been poorly designed (i.e., are design smells) do not
properly represent any role-stereotypical responsibility. Hence, these categories are used as
the ‘other’-bucket which does not clutter up the classification of properly designed classes.
In our approach, we do not use such an ’other’-category and will leave these classes out of355

statistical comparisons.
Now that we have established a correspondence of the stereotypes in both taxonomies,

we use this in the next section to perform more statistical comparisons.

5.3.2. Role Stereotype Classification Performance

In this section, we attempt to compare the classification performance between our clas-360

sifier and Dragan’s StereoClass [2]. To the best of our knowledge, there is no evaluation on
the classification performance of JStereoCode [3].

Dragan et al. conducted an assessment study on their tool StereoClass. The authors
do not report any standard performance metrics (such as precision or recall). However,
precision can be calculated from the data provided by Table IV of paper [2].365

We compare this to the result of our classifier on the K-9 dataset. Our classifier success-
fully classified all 779 classes compared to their 193, and hence is more robust and complete.
Table 13 shows precision rates of StereoClass and our classifier grouped by Wirfs-Brock’s
stereotypes. The first and second columns of the table show the mapping between Dragan’s
stereotypes and the stereotypes we use in this study. The third column “Num. classes”370

shows number of classes labelled by StereoClass. Data in this column is taken from the
column “Tool” in Dragan’s original table (Table IV in [2]).

The fourth column “Precision Rate (%) – StereoClass”, which is also derived from Ta-
ble IV in [2], shows average precision rates (in percentage) across three ground truths ob-
tained from the three subjects in the assessment study. The following example demonstrates375

how we calculate the precision rate for each subject. The precision rate of StereoClass in
classifying IH classes with ground truth from Subject 1 (S1) is number of classes that are
labelled as IH-related by both S1 and StereoClass (i.e. 8 + 1 + 7 + 1 = 17 classes) divided
by number of classes labelled as IH-related by StereoClass (i.e. 13 + 3 + 8 + 2 = 26 classes).
Other measures such as recall, MCC, F1 Score can not be computed because of unavailability380

of the data.

8It is also unclear to us how Large Class and Lazy Class are different from Degenerate.
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Table 13: Precision rates for StereoClass (on HippoDraw) and our classifier (on K-9)

Dragan’s Wirfs-Brock’s Num. Precision rate (%)

stereotypes stereotypes classes StereoClass Our classifier

Entity

Information

Holder

13

58 89
Minimal Entity 3

Data Provider 8

Data Class 2

Commander
Service

Provider

7

88 72Boundary 15

Factory 5

Controller Controller 6 78 0

Pure Controller Coordinator 2 33 98

The fifth column shows the precision rates (in percentage) of our classifier in classifying
single role-stereotype. Data in this column is referenced to data in the column “Precision” in
Table 10a. It is worth noting that the precision rates of StereoClass (in the fourth column)
and our classifier (in the fifth column) are derived from different evaluation settings, using385

different ground truths and on different datasets (HippoDraw and K-9). Therefore, it is
impossible to draw an absolute performance comparison between the tools. The following
observations are made in order to get an impression which tool is good in classifying what
stereotype.

It can be seen from the table that StereoClass performs quite well ([75%, 85%)) and390

very well ([85%, 100%]) in classifying stereotypes that correspond to Controller and Service
Provider. Our classifier performs well ([50%, 75%)) in classifying Service Provider classes
and very well in classifying Information Holder and Coordinator classes. It is also observable
that StereoClass performs better than our classifier in classifying Controller classes, at the
precision rate of 78% compared to our 0%. Both of these numbers may be exaggerated by395

the small number of controller-type classes present in both datasets.

6. Classification Feature Importance

In this section, we discuss the importance of our classification features regarding their
performance in classifying each role-stereotype. Table 14 shows the average Gini scores
of each feature (represented in a row) on every role-stereotype (represented in columns)400

obtained from the above-mentioned binary classification experiment. We omit the feature
isStaticClass for having a poor score of less than 0.001. In model training, the feature
classPublicity was split into four mutually exclusive boolean features representing each pos-
sible value (‘default’, ‘private’, ‘protected’, and ‘public’) due to its categorical nature. In
Table 14, for each role-stereotype, the top five features (highest score) are marked with “∗”,405

while the features that were expected to determine a role-stereotype explained in Section
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4.4 are underlined. These qualities are also reflected by table cell colors: blue cells indicate
top five features, yellow cells indicate expected distinctive features, and green cells indicate
an intersection of both qualities, i.e., we expected them to be important and our results
confirmed it. For each feature, the number of times where it ends up in the Top 5 and the410

number of times where it is expected to be determinant are computed and represented in
columns “#Top.” and “#Exp.”, respectively. The rows are then sorted from highest to
lowest #Top. value.

Table 14: Feature importance for each role-stereotype

Feature # Top. #Exp. CO CT IH IT SP ST

loc 6 2 0.121* 0.155* 0.083* 0.095* 0.112* 0.134*

numImports 6 4 0.118* 0.112* 0.128* 0.183* 0.079* 0.089*

numAttr 3 1 0.060 0.058 0.105* 0.042 0.156* 0.072*

numMethod 3 1 0.065* 0.091* 0.052 0.040 0.055 0.070*

numIfs 3 1 0.068* 0.101* 0.064 0.037 0.062* 0.048

numParameters 2 2 0.061 0.054 0.111* 0.063 0.064* 0.058

numOutboundInvocation 2 3 0.059 0.084* 0.059 0.070* 0.054 0.051

isOrEr 2 2 0.035 0.018 0.073* 0.106* 0.031 0.044

getters 1 1 0.042 0.035 0.040 0.051 0.045 0.067*

numWordName 1 2 0.069* 0.035 0.038 0.038 0.045 0.063

isInnerClass 1 2 0.031 0.046 0.018 0.081* 0.028 0.042

classPublicity public 0 0 0.043 0.021 0.019 0.014 0.027 0.050

numPublicMethods 0 4 0.057 0.063 0.052 0.036 0.055 0.048

numPrivateMethods 0 3 0.016 0.030 0.021 0.024 0.021 0.029

classPublicity private 0 0 0.036 0.012 0.009 0.019 0.011 0.026

setters 0 1 0.018 0.027 0.017 0.016 0.042 0.023

classPublicity default 0 0 0.030 0.020 0.012 0.034 0.011 0.023

numProtectedMethods 0 3 0.015 0.017 0.016 0.016 0.023 0.015

isEnum 0 1 0.008 0.000 0.023 0.004 0.037 0.009

isClass 0 0 0.012 0.002 0.015 0.006 0.011 0.008

isCollection 0 1 0.001 0.000 0.002 0.001 0.004 0.008

isInterface 0 1 0.013 0.000 0.030 0.009 0.013 0.006

isController 0 1 0.001 0.012 0.002 0.004 0.005 0.006

isPersist 0 1 0.011 0.004 0.005 0.004 0.004 0.005

isAbstract 0 0 0.008 0.003 0.007 0.006 0.006 0.004

classPublicity protected 0 0 0.001 0.000 0.001 0.000 0.001 0.001

It can be seen from Table 14 that most of the scores are greater than 0.000 (except
the three cells in column CT and one in column IT), meaning that all features in the415

list affect identifying a role stereotype from others. In terms of prediction power, features
loc (number of lines of code) and numImports (number of import statements) stand out
as always being in the top five most predictive features for every role stereotype. The
significance of numImports implies that the level of collaboration of a class could reveal the

21



pr
e-
pr
in
t

role stereotype the class plays in the design of a software system. Interestingly, Wirfs-Brock420

mentioned the causal relationship between roles and collaboration in her book, that “the
roles an object plays imply certain kinds of collaborations” (p.159 [10]). With this finding,
which is drawn from analysing three realistic software systems, we can confirm the statement
in the other direction “collaborations of a class could characterise its roles”.

Features numAttr (number of attributes), numMethod (number of methods), and numIfs425

(number of if -statements) ranked third to fifth places in the list as the most predictive fea-
tures for three out of six role stereotypes. It is interesting that our (theoretical) expectation
did not identify any of the top five distinguishing features for Structurers. Furthermore, we
expected neither numImports nor numParameters to play a major role in identifying Infor-
mation Holders. In hindsight, the significance of numParameters in an Information Holder430

makes perfect sense because methods in an Information Holder are most likely accessor-types
that require little or no parameters.

To understand how values of these features spread over different role-stereotypes, we
create boxplots of the values of the top 5 predictive features, as shown in Fig. 3. In each
boxplot graph, role-stereotypes are sorted from the lowest to the highest median value of the435

corresponding feature. It can be seen from Fig. 3 that the value of the ranges of the features
differs across role-stereotypes: some ranges are greater than others. For example, Infor-
mation Holder classes are likely to have smaller loc, numImports, numMethod, and numIfs,
while having a generally higher numAttr than Coordinators and Service Providers. This
finding supports our expectation when selecting these features as mentioned in Section 4.4.440

There is also a case where our expectation goes otherwise: we expected Service Provider
classes to have high numImports and loc. However, the graphs show that these numbers
in fact belong to the lower end of the spectrum. A consistent trend across the boxplots is
that Controllers and Interfacers almost always have the largest number of loc, numImports,
numAttr, numMethod, and numIfs.445

Moreover, 4 out of 5 most predictive features (i.e., loc, numAttr, numMethod, and numIfs)
are Complexity features (C2 in Section 4.4). This suggests that the complexity of a class
is an important characteristic that relates to its role-stereotype. We further discuss the
relation between role-stereotypes and a system’s complexity in Section 9.1.

We analysed which features have significant contributions to identifying
roles. Some features seem to be more predictive than others. Among
them, loc and numImports stand out as the best discriminants.
The relation between the role stereotype of a class and the collaborations
it has is a bidirectional relationship: the role a class plays can be inferred
by its collaborations(s) and vice versa.

450

7. Generalizability of the Classifier

In this section, we study the generalizability of our approach. To this end, we explore
different choices of training- and testing-sets. In particular, we study using one or two
projects for training and then testing the classifier on the remaining project(s).
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Figure 3: Distribution of loc, numImports, numAttr, numMethod, and numIfs across role-stereotypes
In each graph: Role-stereotypes are sorted from lowest to highest median value of the corresponding feature

Table 15: Performance of the classifier trained on K-9 Mail

Project Precision Recall F1 Score MCC

Bitcoin Wallet 0.65 0.52 0.56 0.38

SweetHome3D 0.72 0.73 0.72 0.62

7.1. Generalizability Experiment 1: Single Case Training455

We start by applying the classifier trained with data from K-9 Mail from our previous
work [23] to the other two cases. In this experiment, we use the Random Forest classifier
with SMOTE resampling.

Table 15 demonstrates the classifier’s performance trained on K-9 Mail on the other two
cases, Bitcoin Wallet and SweetHome3D. Table 15 shows that the classifier performs average460

on classifying role-stereotypes of Bitcoin Wallet and slightly better on SweetHome3D. We
investigate this further by the confusion matrix of the classifier for both cases presented in
Table 16.

The confusion matrix for both cases (Table 16) shows that the classifier misclassified
all Coordinators (2 classes) and Controllers (5 classes) in the Bitcoin Wallet project (Table465

16a) but managed to classify some of these two role-stereotypes correctly for SweetHome3D
(Table 16b). We think the poor classification happens more in Bitcoin Wallet because the
number of Coordinators and Controllers in Bitcoin Wallet (2 CO and 5 CT) is much smaller
than their numbers in SweetHome3D (21 CO and 38 CT). We believe that this is the main
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Table 16: Confusion matrix of the classifier trained on K-9 Mail

CO CT IH IT SP ST

CO 0 0 1 1 0 0

CT 1 0 0 1 2 1

IH 5 1 42 7 25 3

IT 18 0 1 36 7 0

SP 7 5 4 8 32 1

ST 0 0 1 3 4 5

Predicted Label

A
c
t
u

a
l 

L
a

b
e
l

(a) Bitcoin Wallet (222 classes)

CO CT IH IT SP ST

CO 3 4 3 0 10 1

CT 0 32 0 3 3 0

IH 1 6 200 4 8 8

IT 0 2 2 43 13 3

SP 1 6 15 12 116 9

ST 1 2 13 7 10 5

Predicted Label

A
c
t
u

a
l 

L
a

b
e
l

(b) SweetHome3D (546 classes)

reason why the performance of the classifier on SweetHome3D is better than the performance470

on Bitcoin Wallet. Another concern for the classification of Bitcoin Wallet was that there
was frequent misclassification of Information Holder as Service Provider (25 cases).

7.2. Generalizability Experiment 2: Double Cases Training

Next, we investigate the generalizability of our approach using the combination of two
projects as training data and the remaining case as the testing data. This experiment aims475

to study the effect of having more training data than the previous experiment (i.e., using
only K-9 Mail as the training data). Table 17 summarizes the performance of the classifier
in this experiment.

Table 17: Performance of the classification trained on two cases and tested on the remaining case

Training Data Testing Data Precision Recall F1-Score MCC

K-9 Mail and SweetHome3D Bitcoin Wallet 0.65 0.55 0.58 0.41

K-9 Mail and Bitcoin Wallet SweetHome3D 0.68 0.71 0.69 0.59

Bitcoin Wallet and SweetHome3D K-9 Mail 0.58 0.60 0.57 0.42

When comparing Table 17 and Table 15, it seems that the performance of the classifier
does not differ significantly. The classifier still has the same medium performance in clas-480

sifying role-stereotypes of Bitcoin Wallet and SweetHome3D. In other words, the addition
of another project to K-9 Mail as the training set did not give a significant impact on the
classifier. Using two new projects, i.e., Bitcoin Wallet and SweetHome3D, as the training
set and tested it on the K-9 Mail dataset also gave similar performance.

We then investigated the confusion matrix of the classification result using two projects485

training data presented in Table 18. Table 18 shows a lot of misclassification of Coordinators
in all three cases. We think this is due to the low number of Coordinators, especially in the
classification of K-9 Mail (Table 18c) which has the smallest total number of Coordinators
from two cases in the training set (23 CO).

In the case of classifying Controller, the classifier failed to classify all Controllers in490

Bitcoin Wallet (Table 18a), even though the total number of Controllers from the other two
cases in the training set was the highest (58 CT). We think this is because the number of
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Table 18: Confusion matrix of the classifier trained on two cases and tested on the remaining case

CO CT IH IT SP ST

CO 1 0 1 0 0 0

CT 1 0 0 0 3 1

IH 6 0 44 7 24 2

IT 12 0 1 38 11 0

SP 8 0 5 7 37 0

ST 0 1 1 3 5 2

Predicted Label

A
c
t
u

a
l 

L
a

b
e
l

(a) K-9 Mail and SweetHome3D (train) on Bitcoin Wallet

CO CT IH IT SP ST

CO 1 3 6 1 9 1

CT 1 32 0 2 3 0

IH 1 8 202 3 9 4

IT 1 1 5 38 13 5

SP 1 6 26 7 109 10

ST 1 2 15 7 9 4

Predicted Label

A
c
t
u

a
l 

L
a

b
e
l

(b) K-9 Mail and Bitcoin Wallet (train) on SweetHome3D

CO CT IH IT SP ST

CO 1 1 14 16 37 10

CT 0 4 3 4 8 1

IH 0 1 170 7 44 9

IT 0 1 4 40 25 7

SP 2 4 27 24 242 24

ST 0 1 7 4 29 8

Predicted Label

A
c
t
u

a
l 

L
a

b
e
l

(c) Bitcoin Wallet and SweetHome3D (train) on K-9 Mail

Controllers in Bitcoin Wallet is too small (5 CT) due to different coding styles in which the
developer decided to have only a small number of Controllers.

To see how the addition of another project to the training set affects the classification of495

each role-stereotypes, we also compared the confusion matrix of classifying Bitcoin Wallet
and SweetHome3D using K-9 Mail as training set (Table 16a and Table 16b) with the confu-
sion matrix of two cases training set (Table 18a and Table 18b). In classifying Bitcoin Wallet,
the addition of SweetHome3D in the training set increases the correct classification of Co-
ordinator, Information Holder, Interfacer, and Service Provider but reduces the correct500

classification of Structurer, resulted in a little increase of performance. On the other hand,
adding Bitcoin Wallet to the training set for classifying SweetHome3D reduces the correct
classification of all role-stereotypes except Controller resulting in a performance decrease of
the classifier.

On a different angle, comparing the combination of Android applications (K-9 Mail and505

Bitcoin Wallet) and pure Java application (SweetHome3D) as the training and test set led
to an interesting finding. The combination of two Android applications in the training
set improved performance in classifying pure Java applications (Table 18b). Meanwhile,
combining an Android application with a pure Java application in the training set to classify
the other Android application gave almost equal performance (Table 18a and Table 18c)510

but less than the previous combination. However, we cannot make any further conclusion
without studying more Android and pure Java application cases.
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The Random Forest classification model trained with data from one or
two projects shows a medium performance when classifying the other
project(s). Learning from two projects does not lead to a significant
increase in classification performance compared to using one.

8. Studying the Evolution of the Structure of Software

For studying the evolution of the structure of software, we first apply the classifier against515

a more extensive dataset: the source code of multiple versions of each of our case subjects, K-
9 Mail, Bitcoin Wallet, and SweetHome3D. We then perform data analysis and exploratory
visualisations to discover facts and confirm assumptions on the role stereotypes in software
design.

8.1. Selecting a relevant number of versions for each project520

Data was gathered from multiple versions of each of the projects. For each project, we
used the version described in Table 1 as a pivot. We selected versions relative to this pivot by
selecting versions before and after the pivot with an approximate interval of 3 months. We
chose this interval to get good coverage of the significant changes to the project of interest
while also getting a reasonable number of versions to study the longitudinal evolution. The525

interval might vary slightly depending on whether commits were available in the projects’
version control system on the exact date based on the interval. This way, we obtained 36
versions for Bitcoin Wallet over its lifetime. To keep things comparable, we selected 37
versions for K-9 Mail and SweetHome3D. The period for the selected versions spans from
the beginning of 2011 to the beginning of 2020.530

Test classes such as JUnit-classes were removed since they do not represent the structure
of the actual software. We manually identified and removed those classes from each version
of the three projects.

To identify the class role stereotypes in the source code, we apply our role stereotype
classifier to all classes of all selected versions of all three projects. We used the model535

trained using Random Forest method on SMOTE-resampled ground truth data from the
pivot versions of all three projects for this study.

One of the selected versions of Bitcoin Wallet, specifically the version from 2011-10-
03, was removed. This version contains many Java classes that were not included in any
other subsequent versions of Bitcoin Wallet. When included, this version caused a massive540

spike at that time point to the degree that the rest of the data became insignificant. Our
interpretation is that this was a trial to include some library into the project that was already
discarded in the next version that was committed. We choose to remove the data from this
version for the sake of readability. The removal does not affect the overall picture of the
evolution of the Bitcoin Wallet project.545

SweetHome3D had two separate sub-projects, “FurnitureLibraryEditor” and “Texture-
LibraryEditor”, included in the main project directory at the pivot version. However, these
subprojects were not part of earlier versions of the project, and they are not considered
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parts of the main application. Therefore, we choose to focus on the main SweetHome3D
application in our study and exclude the sub-projects.550

All the raw data extracted from the tools can be found in a Github repository9.

8.2. Graphs & Analyses

Our initial step is to create graphs showing the numbers of each stereotype over time, as
shown in Figure 4. For the sake of legibility, we name the versions we selected in integers
starting from 1. This numbering does not reflect actual release version of each project. For555

completeness, we include a version of the graph for Bitcoin Wallet that does not ignore the
problematic version number 3 (from 2011-10-03) in Figure 5. Note that the high frequencies
of Information Holders and Service Providers in versions 4 to 7 of Figure 4c are likely to be
remnants of the removed version 3 and should be interpreted as such.

Changes in the distribution of role stereotypes over time. In K-9 Mail, the most common560

role is Service Provider. Information Holder is also very common. All roles except for
Controller make a noticeable increase at the beginning of 2013 (version 9) and then decreases
again halfway through 2014 (version 15). In SweetHome3D, Information Holder is the
most common role. Service Provider is also very common. The distribution of roles in
SweetHome3D remains mostly unchanged throughout the time period. In Bitcoin Wallet,565

the most common role is Service Provider. Information Holder and Interfacer are also very
common, both growing steadily throughout the time period. The number of Information
Holders increase drastically at the beginning of 2018 (around versions 29 to 30) and causes
the distribution of roles to make a noticeable change, making Information Holder the most
common role instead of Service Provider.570

The three projects share some characteristics but also have some significant differences
in terms of the distribution of roles over time. Bitcoin Wallet and K-9 Mail both have
Service Provider as the most common role, while SweetHome3D has Information Holder as
the most common role. In K-9 Mail and SweetHome3D, the distribution of roles is mostly
unchanging throughout the entire time period, while the roles in Bitcoin Wallet seems to575

fluctuate a bit. Bitcoin Wallet has an unusually high amount of Interfacers in relation to
the other roles compared to K-9 Mail and SweetHome3D.

All three projects have a somewhat low numbers of Structurers, Controllers, and Coor-
dinators compared to other roles. In SweetHome3D, the Coordinator is the least common
role, which is not the case in Bitcoin Wallet and K-9 Mail that instead has the Controller580

as the least common role.
The graphs from Figure 4 do not show the dynamics of each class. Instead, we visualise

the same data in a different format (Figure 6), presenting each class within a project as a
horizontal line that spreads across versions (depicted as vertical dark lines). The colour of
a line segment denotes its role stereotype in each specific version. We use the same colour585

coding throughout this section. The classes are grouped by the role stereotype of their first
appearance.

9https://github.com/fabianfroding/apcrm/tree/master/Resources/raw-data
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Figure 4: Distribution of the roles in each version of the three cases.

These graphs provide insight on the stability of a software project at a glance. We can
see that classes in SweetHome3D tend to exist for longer period of time and that there are
less new classes introduced during the selected window compared to the other two projects.590

In both K-9 Mail and Bitcoin Wallet we can see new classes introduced that are later moved
or removed. (It should be noted that classes are identified based on their fully qualified Java
class names, e.g., com.fsck.k9.Account, and as such, if a class were moved to a different
package or renamed, it is considered a separate class in this representation.)

These graphs also show how some classes change stereotypes during their lifetime. For595

example, in the topmost of the Service Provider group of SweetHome3D (coloured blue,
between the 350 and 400 class marks), we can see a couple of classes that switched roles to
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Controller (purple) early in their lifetime. A few classes down, we see a class that turned
to Interfacer (yellow) but quickly changed again and spent most of its life as a Coordinator
(green). A notable number of classes that appear or disappear together, such as those around600

the 300 mark and 900–1000 marks in K-9 Mail (Figure 6a) are likely subjects to refactoring
events. To explore further into this direction, we analyse two specific cases where class role
change has happened in two projects K9-Mail and Bitcoin Wallet in Section 8.3.

Figure 7 shows the number of individual changes in role stereotypes. These numbers605

do not represent the actual number of classes that switch role stereotypes, as some classes
changed stereotypes more than once in their lifetime.

K-9 Mail underwent substantial number of changes in role-stereotypes, concretely at
161 instances. A majority amount of changes are from Service Provider, Interfacer, and
Coordinator to other roles, with 47, 41 and 23 instances respectively. Moreover, a majority610

of classes changes from other roles to Service Provider and Interfacer, with 47 and 33
instances respectively.

SweetHome3D has 62 occurrences of classes changing roles throughout the time period,
with 14 instances derive from classes switching from Service Provider to other roles, and
another 14 from Structurer. Additionally, 20 classes changed from other roles to Service615

Provider.
In Bitcoin Wallet, there have been 85 instances of classes changing roles throughout all

selected versions. Most changes are seen in Service Provider and Interfacer. Specifically,
there are a total of 29 instances of classes switching from Service Provider to other roles and
a total of 23 instances of classes switching from other roles to Service Provider. Furthermore,620

20 classes changed from Interfacer to other roles, and conversely, 21 classes changed from
other roles to Interfacer.

Most classes that change stereotypes only changed once in the selected time window.
To be precise, 83, 53, and 44 classes from K-9 Mail, SweetHome3D, and Bitcoin Wallet
respectively did so. However, some other classes changed stereotypes more than once. We625

call these classes “chameleons” and found 32, 7, and 17 of them in each respective case. The
largest number of changes that a class experienced is five (FolderInfoHolder, K-9 Mail),
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Figure 6: Roles of each class in each version of the three cases. The x-axis represents versions. The charts
differ in the y-axis scale due to the significant difference in the number of classes
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Figure 7: Frequency of role stereotype changes in three cases.

but the largest number of unique role stereotypes that a class assumed is four. Figures 8, 9,
and 10 depict these classes and all the assumed role stereotypes.

From these charts and those of Figure 7, we identified frequently occurring changes630

such as Interfacer to Service Provider, Service Provider to Interfacer, Service Provider to
Information Holder, and, in fact, Service Provider to any role reverting to Service Provider,
and to a lesser extent Interfacer to any role reverting to Interfacer. However, there are
indications that some of these patterns are the result of misclassification by our ML model.
An obvious one is K-9 Mail’s FolderInfoHolder class—this class name strongly suggests an635

intended role of Information Holder, however our classifier predicted variants of this class as
Structurer and Service Provider in addition to Information Holder. We discuss the patterns
of role stereotype evolution further in 9.3.
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com.fsck.k9.activity.FolderInfoHolder (3 unique roles)

com.fsck.k9.helper.Contacts (3 unique roles)

com.fsck.k9.activity.FolderList.FolderListAdapter (3 unique roles)

com.fsck.k9.activity.Accounts (3 unique roles)

com.fsck.k9.view.K9PullToRefreshListView (2 unique roles)

com.fsck.k9.activity.K9Activity (2 unique roles)

com.fsck.k9.activity.K9ActivityCommon (3 unique roles)

com.fsck.k9.activity.MessageReference (4 unique roles)

com.fsck.k9.controller.MessagingController.Command (2 unique roles)

com.fsck.k9.mail.store.pop3.Pop3Folder (2 unique roles)

com.fsck.k9.K9 (3 unique roles)

com.fsck.k9.mail.Certi�cateValidationException (2 unique roles)

com.fsck.k9.mail.internet.BinaryTempFileBody (2 unique roles)

com.fsck.k9.activity.Search (3 unique roles)

com.fsck.k9.controller.MessagingController.MemorizingListener (3 unique roles)

com.fsck.k9.Account (2 unique roles)

com.fsck.k9.activity.UnreadWidgetCon�guration (2 unique roles)

com.fsck.k9.view.MessageTitleView (2 unique roles)

com.fsck.k9.mail.store.WebDavStore (3 unique roles)

com.fsck.k9.mail.transport.smtp.SmtpTransport (2 unique roles)

com.fsck.k9.activity.K9ListActivity (2 unique roles)

com.fsck.k9.mail.ssl.DefaultTrustedSocketFactory (2 unique roles)

com.fsck.k9.ui.messageview.MessageCryptoPresenter (2 unique roles)

com.fsck.k9.EmailAddressAdapter (2 unique roles)

com.fsck.k9.mail.store.Pop3Store.Pop3Capabilities (2 unique roles)

com.fsck.k9.mail.Transport (2 unique roles)

com.fsck.k9.mail.store.pop3.Pop3Message (2 unique roles)

com.fsck.k9.mail.transport.WebDavTransport (2 unique roles)

com.fsck.k9.mail.store.pop3.Pop3Store (3 unique roles)

com.fsck.k9.mail.internet.MimeUtility (2 unique roles)

com.fsck.k9.mail.store.imap.ImapFolder (2 unique roles)

com.fsck.k9.mail.store.imap.ImapMessage (3 unique roles)

Figure 8: “Chameleons” in K-9 Mail.

com.eteks.sweethome3d.j3d.Ground3D (3 unique roles)

com.eteks.sweethome3d.swing.ControllerAction (3 unique roles)

com.eteks.sweethome3d.io.DefaultUserPreferences (3 unique roles)

com.eteks.sweethome3d.tools.OperatingSystem (3 unique roles)

com.eteks.sweethome3d.swing.ImportedFurnitureWizardStepsPanel.AbstractModelPreviewComponent (3 unique roles)

com.eteks.sweethome3d.io.DefaultHomeInputStream.HomeObjectInputStream (2 unique roles)

com.eteks.sweethome3d.io.DefaultHomeOutputStream.HomeObjectOutputStream (2 unique roles)

Figure 9: “Chameleons” in SweetHome3D.

8.3. Examples of classes changing stereotypes

In this section, we look at two cases where the classifier identifies a change of role of640

a class (from one version to the next version that we look at). We look at one case from
Bitcoin Wallet and one case from the K9-Mail app. We create a visualisation that shows
the class that changes and its dependencies to other classes. The diagram also shows the
package containment. In both cases, analysis of the source code supports the conclusion
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de.schildbach.wallet.ui.AbstractWalletActivity (4 unique roles)

de.schildbach.wallet.camera.CameraManager (3 unique roles)

de.schildbach.wallet.ui.PreferencesActivity (3 unique roles)

de.schildbach.wallet.ui.AddressBookActivity (2 unique roles)

de.schildbach.wallet.WalletBalanceWidgetProvider (2 unique roles)

de.schildbach.wallet.ui.WalletAddressesAdapter (2 unique roles)

de.schildbach.wallet.util.BitmapFragment (2 unique roles)

de.schildbach.wallet.ui.RequestCoinsActivity (2 unique roles)

de.schildbach.wallet.util.WalletUtils (3 unique roles)

de.schildbach.wallet.util.Formats (3 unique roles)

de.schildbach.wallet.ui.CurrencyCalculatorLink (2 unique roles)

de.schildbach.wallet.ui.PeerListFragment.ReverseDnsLoader (2 unique roles)

de.schildbach.wallet.ui.MaybeMaintenanceFragment (3 unique roles)

de.schildbach.wallet.service.BlockchainService (2 unique roles)

de.schildbach.wallet.ui.send.RequestWalletBalanceTask (2 unique roles)

de.schildbach.wallet.util.GenericUtils (2 unique roles)

de.schildbach.wallet.ui.BlockListFragment.BlockListAdapter (2 unique roles)

Figure 10: “Chameleons” in Bitcoin Wallet.

that the role of a class has indeed changed. This finding confirms our view that the classifier645

can be used to detect changes to the system’s design, including refactorings.

Example 1. Class BlockchainService (Bitcoin Wallet project). Figure 11 shows
the change of role of class BlockchainService from Interfacer at version 4 (commit id
fe59b12 in Fig. 11) to Information Holder at version 5 (commit id 77fc50b). At first,
class BlockchainService contains methods and the logic needed to response to a num-650

ber of events at WalletApplication, thus playing the Interfacer role between the main
app interface and internal block chain services. Here, this class has a dependency to class
WalletApplication.

In the next version, the class is refactored to become an Information Holder that only
contains constants and definitions of services. Looking into the diagram, we realize that a655

new class called BlockchainServiceImpl was created. This class contains the implementa-
tion of the methods that previously resided within class BlockchainService. In addition, all
the dependencies that were from the class BlockchainService to class WalletApplication
are now moved to class BlockchainServiceImpl (and therefore do not show in the picture
because this visualisation only shows direct dependencies to and from the class ‘in focus’,660

i.e., BlockChainService). Hence, class BlockchainServiceImpl now plays the Interfacer
role. Here we observe the splitting off of responsibility into two classes: definition of the
interface is done by BlockchainService and the implementation of the services resides in
BlockchainServiceImpl.

Example 2. Class MessageWebView (K9-Mail project). In this example, the role of665

class MessageWebView was changed from Interfacer to Coordinator as shown in Figure 12.
In the version 22 (commit id 28232ed in Fig. 12), the role of class MessageWebView was
Interfacer. The code of this class contains the configuration of the message to load into a
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Figure 11: Role change at class BlockchainService of the Bitcoint Wallet project.

web view (which allows displaying web pages as a part of the Android activity layout). In
particular, it contains logic to wrap the message text in an HTML header and footer so that670

the message can be appropriately displayed in the web view.
In version 23 (commit id d276bbd), the role of class MessageWebView changed into Co-

ordinator. It coordinates the task of formatting message text to a newly created class called
K9WebViewClient. This class also extended the basic HTML text display to handle URIs
within the message body via intent (an Android mechanism that allows starting another675

app from within a running app). Besides, it delegates the work of handling attachments to
another newly created class called AttachmentResolver.

Figure 12: Role change at class MessageWebView of the K9-Mail project.
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9. Discussion: Finding New Uses of Role Stereotypes

In this section, we reflect on the results described in the previous sections. The automatic
classification into role stereotypes opens new directions for analysing and understanding soft-680

ware designs. Having complete identification of role stereotypes for all classes in a software
system enables analysis of software structure, leading to software design comprehension and
summarisation. Where versioned source code of the software is available, complete role
stereotypes classification also enables the analysis of the evolution of a software structure,
potentially identifying refactorisation history and patterns (and anti-patterns) in software685

design evolution.

9.1. Analysing the Dominant Role Stereotypes within Software Project

This subsection explores whether there is any regularity concerning the occurrence of
role stereotypes across the multiple cases that we consider. Fig. 13 contains three diagrams
that show the frequency of occurrence of the role stereotypes and the relationships between690

them for our three cases. The numbers below the role stereotype names in each diagram
indicate the absolute and relative number of occurrences of the role stereotypes. The labels
on the edges indicate the type and frequencies of occurrence of relations between these role
stereotypes. Looking at these diagrams side by side, we can see similarities and differences
between the three cases. Next, we will look into these in more detail.695

Role stereotypes occurrence in systems is imbalanced. In Fig 13, we can see that some stereo-
types occur often, and some are rare. Nevertheless, the numbers suggest that there may be
regularities across software systems. For example, the Information Holder -stereotype covers
30% - 40% of the classes for all systems. Another example is that the Controller stereotype
seems rare: it represents only between 2.3% - 7.0% in all systems. This finding aligns with700

Dragan’s: by applying StereoClass on five open source systems, Dragan also finds that the
stereotypes that they consider differ in frequency of occurrence, but the relative frequencies
of occurrence are somewhat regular across systems [2].

We note that the categories of stereotypes used by Dragan have similarities and dif-
ferences to our categories. For example, both our and their approaches use categories for705

Information Holder and Controller, for which their semantics seem to match. Furthermore,
we find similar percentages of occurrence for these categories in Dragan’s work (29.6% on
average for Information Holder and 1.9% for Controller) compared to the numbers across
our three cases (34.0% and 4.0%, respectively). This ties with the very definition of some
role stereotypes. For example, Coordinators provide service to Interfacers by coordinating710

several Service Providers, so, logically, there would be more Service Providers than Coor-
dinators. Indeed, this highly unbalanced distribution of stereotypes harms the performance
of the machine learning algorithms.

On the occurrence of stereotypes and the complexity of systems. Coordinators are present
in systems designs when there is a need for coordinating or delegating jobs from one class715

to another class. This need arises when a class becomes too big in size and complicated.
It follows that Coordinators are seen less often in small systems and more often in large
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Figure 13: Occurrences of role stereotypes in the three cases

systems. From our 3 cases, we observe that the frequency of Coordinators increases with
the size of the systems. In particular, there are only two Coordinator and five Controller
classes in the case of Bitcoin Wallet—together, less than 4% of all classes. On a closer720

look, these classes contain little logic for the controlling and coordinating of workflows from
Interfacer to Service Provider and Information Holder classes. In fact, in Bitcoin Wallet,
most user requests are distributed directly to Information Holders and Service Providers by
Interfacers. It results in a high frequency of collaboration between these role stereotypes.
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This pattern is different from the SweetHome3D and K-9 Mail cases, where a large amount725

of work is coordinated via Coordinators and Controllers.
Indeed, the reasonably small amount of Coordinators and Controllers in Bitcoin Wallet

can partly be explained by looking into the design intention of the system. That is, Bitcoin
Wallet focuses on providing wrapper functions to the bitcoinj library for Android devices.
It relies on bitcoinj to maintain a wallet and send/receive transactions in Bitcoin protocols.730

Consequently, the logic and workflows defined in Bitcoin Wallet are primarily used for mon-
itoring the process and adapting it for Android users to use. Given this characteristic of
the design, the direct contact from Interfacers (where user requests are made) to Service
Providers (as execution units) and Information Holders (as data storage) can be considered
as efficient.735

Compared to Bitcoin Wallet, K-9 Mail and SweetHome3D can be considered more com-
plex because the main logic/workflows are defined internally. In contrast, Bitcoin Wallet
can build on much logic that is contained in an external library. In particular, K-9 Mail
handles the mailing process from the level of mail protocols to end-user management level
(such as multiple account management, scheduling services), and SweetHome3D provides740

services for designing home plans which might include creating/joining walls, arches, inser-
tion of windows, doors, et cetera. Thus, the complexity of the systems/services requires more
fine-grained coordination mechanisms, i.e. via employing Coordinators and Controllers in
between Interfacers and Service Providers or Information Holders.

The presence and distribution of role stereotypes in a system reflects its architectural char-745

acteristics. Our analysis of three different systems from the perspective of role stereotypes
has led us to understand that such analysis can uncover how a system’s architectural design
follows some architectural style or design principles. In this section, we illustrate some of the
insights that can be obtained from such analyses. For understanding these analyses, recall
that Bitcoin Wallet and K-9 Mail are built on the Android framework, while SweetHome3D750

is a pure Java desktop application.
Smaller numbers of Controllers (2.5% and 2.3%) are observed in the two Android apps

than the pure Java app (7%). The nature of Android applications provides a partial ex-
planation: they are built upon Android frameworks that encapsulate the Android OS’s
low-level functionalities. Thus, some Controller, Structurer, and Interfacer classes at UI755

and activity management level, as well as collaborations between them, might be hidden
away; fewer control logics need to be created as part of an overall application. Meanwhile,
in SweetHome3D, persistence tasks are implemented via basic java.io functions, and the user
interfaces are implemented mainly by using and customising Swing components. Moreover,
being a pure Java app, extra control logic are needed for handling portability across differ-760

ent execution environments (such as different operating systems). Implementing these could
result in extra control units and data units. For this, we can expect a higher occurrence of
Controller and Information Holder classes.

Examining the two Android applications, on the one hand, we observe that the portion
of Interfacers in Bitcoin Wallet is much higher than in K-9 Mail. On the other hand, K-9765

Mail contains more Service Providers (41.5%) than Bitcoin Wallet (25.7%). This number
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suggests that Bitcoin Wallet must handle more user interaction and a smaller amount of
actual transactional services, whereas K-9 Mail has a greater focus on building business
mailing services. This finding aligns with that of Bagheri et al. [26]. By studying 200
Android applications in the Google Play store, the authors found that Android applications770

in different domains have different architecture characteristics regarding the type and number
of components. In particular, “finance” applications, such as Bitcoin Wallet and other
banking or payment systems, provide richer user-interface than other applications. On the
other hand, applications for which “communication” is the key feature, such as K-9 Mail,
largely depend on listening, receiving, and handling system events. Such events, in turn, are775

typically handled by a Service Provider -type of class.
While in the Android projects Service Provider is the dominant stereotype, in Sweet-

Home3D Information Holder appears most frequently. Reflecting the nature of this software
system, this makes sense since SweetHome3D is a data-intensive software that manages var-
ious information regarding three-dimensional objects in an environment.780

The role a class plays within a software system reflects design intention.
The design intention is, in its turn, affected by architecture style, choices
of technology/library use, and domain-specific requirements. Therefore,
it is possible to use role stereotypes as a tool for profiling/capturing soft-
ware systems’ design styles and intentions. It also enables the possibility
to compare designs of different software systems via their role stereo-
types.

9.2. Feature Importance and Detection of Anti-patterns

Looking back at the importance of class features as discussed in Section 6, we have
shown the top five determining features to differentiate the role stereotype of a class: loc,
numImports, numAttr, numMethod, and numIfs. We have also shown the value trends of each785

feature in Figure 3 and how some of our assumptions when selecting features in Section 4.4
were confirmed or debunked. For example, we can see that Information Holders tend to
have fewer loc, numImports, numMethods, and numIfs but have a moderate numAttr since it
correspond with the information they hold. We propose an additional use of these features
in relation to role stereotypes, to detect anti-patterns in program source code.790

Sharma and Spinellis [27] presented a catalogue of design smells (which, for our purpose,
are considered equal to design anti-patterns) including smell detection techniques. Be it
metrics-based, heuristic-based, history-based, ML-based, or optimisation-based, all smell
detection techniques act on software metrics. To illustrate our point, we take, for example,
anti-patterns Large Class and Lazy Class [28, 29], which directly correlate with some features795

that we use in this study.
A Large Class is defined as “a class that has grown too large in term of LOCs.” It

correlates directly with our top-defining feature loc. It can be arbitrary to decide how many
lines of code is too many, but by examining Figure 3 we can say that, for example, it is
quite normal for a Controller to have 200 to 500 lines of code, while 150 may already be800

too large for an Information Holder. Taking the distribution of loc in different roles at face
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value may introduce bias toward our studied case, but at the very least, we can rank each
role stereotype in terms of its average loc and derive some heuristics to tailor the detection
of Large Class specifically according to a class’ role stereotype. Our data suggest that
Service Providers and Coordinators can have similar loc that are generally fewer than those805

of Interfacers and Controllers.
Contrast to the Large Class, a Lazy Class is “a class that has few fields and methods.”

As this description suggests, this anti-patterns is related with our features numAttrs and
numMethods. Figure 3 suggests that Service Providers and Coordinators cannot be con-
sidered lazy even if they have no attributes. Thus, for these role stereotypes, detecting810

Lazy Class anti-pattern should involve only numMethods. Conversely, Information Holders
are characterised by their attributes, and therefore numAttr may have larger impact than
numMethods in detecting Lazy Class in Information Holders.

Furthermore, the evolution of role stereotypes over time can also contribute in identifying
anti-patterns. While we cannot say that a specific pattern of role change correlates with815

a specific anti-patterns, we suppose that the existence of an uncommon stereotype change
in a class should raise a flag and encourage the programmer to examine the class for anti-
patterns. We repeat for clarity that the common changes are Interfacer to Service Provider,
Service Provider to Interfacer, Service Provider to Information Holder, Service Provider to
any role reverting back to Service Provider, and Interfacer to any role reverting back to820

Interfacer.
We also propose that the ratio of role stereotypes within a software project can detect

architectural smells. For example, we have shown that in both Android applications, most
classes are either Information Holders or Service Providers. When an Android application
project has a more significant number of Interfacers compared to Information Holders, for825

instance, we suspect that sub-optimal architectural design may be in place. However, as
we only examined two Android applications and one desktop application, we cannot stake a
claim on the validity of this method. A more extensive study on role stereotypes in different
classes of software projects would benefit this direction of thought.

Role stereotypes can be used to aid in anti-pattern detection, either
by tailoring design metrics thresholds to specific role-stereotypes, or by
finding undesirable patterns of role stereotypes.

830

9.3. Patterns in the Evolution of Role Stereotypes

Refactoring and the change in the distribution of role stereotypes. In section 8, we saw a
dramatic rise in both Information Holder and Service Provider classes in Bitcoin Wallet
version 4, with virtually no change in other stereotypes (Fig. 4c). These additions appear to
be reverted in version 8. We noted that this change is likely to result from the experimental835

addition of an external library into the codebase. These couple of changes happen very early
in the development of Bitcoin Wallet, where architectural instability can be expected.

There is also a high increase of Information Holders around version 29. Since none of the
other roles decreases at this time-point, this indicates that the developers added a significant
amount of Information Holder -classes. We suspect that the developers attempted to extend840
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the application by adding domain models. Domain models are classes that represent real-
world objects or entities and hold information related to these objects[30]. Considering that
the responsibility of an Information Holder is to hold and provide information[10], it is likely
that new domain models were added to the project, ergo the drastic increase of Information
Holders at the beginning of 2018. However, inspection and evaluation of the source code845

are necessary to confirm this suspicion.
We saw an increase in several roles in K-9 Mail in version 9. Similarly to what happened

in Bitcoin Wallet, this increase did not occur in parallel with a decrease of any other roles,
indicating an extension of the application. However, since this increase concerns all roles
except the Controller, it becomes difficult to speculate what the source of this increase could850

have been. These classes were removed not long after, coinciding with the addition of a small
number of classes (Fig. 6a), which suggests the possibility of merging functionalities into new
classes. Again, source code inspection is crucial to confirm this.

In the results for SweetHome3D, we did not see any significant changes in the distribution
of the roles. Instead, we can see a slow and steady increase in all roles, indicating a stable855

and professional evolution of the software design.
All three projects share high frequencies of Information Holders and Service Providers.

Based on the responsibilities of each role, we suspect that the demand for classes the hold
and provide information, and compute tasks and perform work are high for these types of
applications.860

Based on the definition of the responsibility of an Interfacer as ”handling and transform-
ing requests and information between different parts of a system”, it seems likely that the
variety and number of parts that a system has might increase the occurrence of Interfacers.
In our cases, we can see that all three projects have more or less the same number of Inter-
facers, specifically around 60 to 70. It is interesting to note, even when the three projects865

differ in size and number of classes, that despite their difference in size, they still have a
similar demand of classes to perform the work of the Interfacer stereotype.

To summarise, we saw three significant changes in the distribution of role stereotypes
in Bitcoin Wallet, two in K-9 Mail, and none in SweetHome3D. A change in the ratio
of role stereotypes indicates a major change to the design. In other words, we postulate870

that refactoring events can be characterised by such significant changes. Furthermore, the
relatively low number of refactoring events suggest architecture design-stability in all three
projects.

We also ponder the question of whether “chameleon” classes are possible results of refac-
toring events. Close observation on Fig. 6 present no such correlation in K-9 Mail. However,875

a small number of classes did switch role stereotypes in the second refactoring event of
Bitcoin Wallet.

On role stereotype evolution patterns. From the interpretation of the presented data in Sec-
tion 8, it is evident that the majority of classes classified as Service Provider are more prone
to change roles over time in all of the selected projects, and conversely, most classes also880

tend to switch from other roles to Service Provider.
An interesting finding is that there exists interchanging relationships between certain
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pairs of role stereotypes. This can be seen most evidently in Bitcoin Wallet, for example, 8
classes changed from Interfacer to Coordinator, and conversely, 9 classes changed from Co-
ordinator to Interfacer. Accordingly, 7 classes changed from Interfacer to Service Provider,885

and 9 classes changed from Service Provider to Interfacer (Figure 7c). More examples can
be seen with other pairs of roles in all of the projects (Figure 7). These changes could be an
issue of inaccurate classification in our ML model, as it may have classified a class as one role
and the same class as another role at a later point in time. To confirm such speculation, we
compare the confusion matrix table of our classifier (Table 18) with Figure 7. Our analysis890

indicates that the classifier tends to misclassify Interfacers as Service Providers and vice
versa. Similar tendencies apply to the roles of Information Holder and Service Provider.
Accordingly, in all projects, most changes in roles do involve Interfacer changing from and
to Service Provider as well as Information Holder changing from and to Service Provider.

Although there are some correlations between the misclassification of certain pairs of895

role-stereotypes and the number of changes in those pairs, we cannot confirm whether in-
terchanging relationships between the pairs or the relationships are the results of inaccurate
classification without performing thorough code inspections. For example, if a class switch
roles from Interfacer to Service Provider with only a few changes in the source code, or
with changes that are insufficient to be labelled as Service Provider, we can suspect that the900

interchanging relationships are derived from the inaccurate classification of role-stereotypes.
The same principle applies to classes that have changed role-stereotypes multiple times

throughout the time period (Figures 8, 10, and 9). We can see that the largest number of
roles a class has been assigned is four, and thus, we are uncertain whether the changes come
from the developers’ intention or the accuracy error of the classifier. We only suspected that905

it is unlikely for a class to have been assigned four different role stereotypes. Further code
inspection is required to validate the suspicion.

Furthermore, we also suspect that if the classifier had been trained on a more broad
range of projects, it might have reduced the classifier’s sensitivity and consequently reduced
the number of role changes.910

A change in the distribution of role stereotypes indicates a refactoring
event. A significant change in the ratio of role stereotypes reflects a
major change in the design. “Chameleon” classes could be appropriately
caused by refactoring events, or the result of misclassification due to the
corner cases of the classifier.

9.4. Use in Program Comprehension

Another use we foresee of using role-stereotype classification is in program comprehension
and design summarisation. Knowing the role stereotypes of classes can aid in program
comprehension: the role-stereotype suggests a type of responsibility that a component has,915

and thus the types of functionality that it should contain and the types of collaboration(s)
that it can engage in. This information can be inferred by an IDE and cued to the developer.
Also, for understanding patterns in the design, knowledge of role stereotypes is useful.

One method used for program comprehension is reverse engineering. Often, reverse
engineering produces visualisations that contain much information and much detail. The920
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knowledge of role stereotypes can aid in producing good layouts of reverse-engineered di-
agrams. Moreover, knowledge of role stereotypes can aid in reducing the information pre-
sented to developers through design summarisation. Initial studies into summarisation have
been described by Osman [31]. These studies showed that additional semantic information
about components in the design could be useful. Figure 14 shows two examples of design925

summarisation. These are examples of actual patterns found in the cases studied in this
paper.

Various researchers work in program summarisation in different levels. Hu et al., for
instance, uses NLP techniques to summarise Java methods [32]. We call this “method-level
summarisation”. On the other hand, Moreno uses NLP techniques, static code analysis, and930

software repositories mining to provide summaries of Java classes (“class-level summarisa-
tion”) and automatically generate release notes, i.e., the most important changes between
releases (“application-level summarisation”) [33]. The design summarisation we refer to in
the previous paragraph lies between class-level and application-level summarisation. We
believe this kind of summarisation, where we identify how classes interact or collaborate,935

supports the direction of architecture recovery [34]. Furthermore, the significance of fea-
tures we identify in our work may help both method-level and class-level summarisation by
providing context to the method or class in question.

(a) Example of summarization into a Data Structure-concept

(b) Example of summarization into an Interfacer-concept

Figure 14: Example of summarization of a collection of classes into a higher level conceptual representation
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10. Threats to Validity

Threats to Internal Validity. An OOP class may be responsible for multiple roles and940

responsibilities [10]. In this study, however, we have chosen to build a machine learner that
captures only one role for each class. This choice might cause an incomplete view of the
roles and responsibilities of a single class. However, given that only a low number of classes
carry multiple roles (68 out of 1547 classes, ≈ 4.4%), we consider this threat acceptable and
the trade-off to keep our classification model relatively simple.945

Threats to External Validity. Our machine-learning classification model was trained and
evaluated on two Android projects and one pure Java project in this study. There might be
threats to the generalization of the classification model to other projects. In the future, we
plan to extend the ground truth and possibly retrain the classification model proposed in
this study with more projects, e.g. more pure Java projects or projects in other languages950

than Java.
We believe the methods used in this study can be generalized to other OOP systems

in various programming languages for the following reasons: i) the notion of class role-
stereotype applies to OOP in general, regardless of implementation programming languages;
ii) scripts [18] used in this study can be used to extract source code features from different955

languages than Java. The XPath queries that were used to extract features from parsed
srcML files can be adapted to other languages such as C#, C/C++ by following srcML
language and grammar rules10.

We, however, would not generalize the result of this study to programming languages
and paradigms other than OOP.960

11. Conclusion and Future Work

Role Stereotypes have been introduced as a conceptual aid in designing and especially
scoping components. In this paper, we show that the role responsibilities can for a large
degree be automatically inferred from the source code. Knowledge about the role-stereotype
of classes can be useful in i) facilitating program understanding, ii) architecture recovery,965

and iii) improving the detection of design smells.
A key contribution of this paper is the construction of a machine learning-based ap-

proach for the automatic classification of role-stereotypes of classes in Java. We find that
the Random Forest algorithm without SMOTE resampling yields the best performance for
the multi-class classification with an F1-Score = 0.64. For the binary classification, we expe-970

rienced challenges with an imbalanced dataset, i.e., some role-stereotypes are rare compared
to others. In the imbalanced data, the classifier has varied MCC performance in detecting
each role-stereotypes (0.14 to 0.70). This can be partially explained by the low frequency
of occurrence of these roles in the design (offering few training examples). The SMOTE
resampling technique increases the number of rare role-stereotypes in the dataset, resulting975

in more balanced training data as shown by the change in MCC scores. However, the slight

10srcML grammar rules: https://www.srcml.org/documentation.html
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gain at detecting Coordinators (MCC score = 0.20, a mere 0.06 gain) was achieved at the
expense of a considerable performance loss in most other stereotypes.

We used the classifier to analyse 3 medium-size open source systems. Our findings suggest
that the ratio of different role-stereotypes exposes characteristics of the type of application.980

Also, we studied the evolution of role-stereotypes over time. These analyses showed that
large changes in the ratio of role-stereotypes coincide with major refactorings of the design.

Future Work

At this point in the research, it seems further improvement to the performance of the
classifier would be valuable. In particular attention needs to be paid to improving the985

classification of ’rare’ role-stereotypes (esp. Controller). We identified some directions that
could potentially help to improve the performance of the classifier in general: i) using a
probabilistic iterative approach, i.e., roles with high-precision can swing the classification
of other classes based on the relationship between these classes, ii) normalising the values
of several features, e.g., by considering the ratio of public and private methods rather than990

using the absolute numbers, iii) combining machine learning with the rule-based approach
in an ‘ensemble method’, thereby exploiting that rules are not sensitive to small numbers
of training data, iv) combining individual binary classifiers, and v) using deep learning
methods, although this probably requires a much more extensive training set.

We also mentioned several times in our discussion the importance of more extensive study995

on role stereotypes in different types of software project. Indeed, further study involving
systems such as web applications, embedded systems, and microservice applications, to name
a few, would help us advance the understanding of role stereotypes in software architecture.

The fact that the classifier works in an automated way enables the rapid labelling of
role-stereotypes for extensive collections of classes and practically the entire source code of1000

systems. In turn, this enables novel analysis that sheds light on the anatomy of software de-
signs, such as analyses of the frequency of particular collaboration patterns between different
stereotypes. We believe there are yet undiscovered regularities in the anatomy of software
designs that can be uncovered through further studying these role-stereotypes for larger
sets of projects. In particular, we suggest applying role stereotype analyses together with1005

tools that aim to recognise refactoring events—especially at the level of architecture design.
It would be interesting to see whether role stereotype perspective contributes additional
understanding into the nature of refactoring.

Moreover, now that we have a robust automatic classifier for role-stereotypes, we can
study advanced questions: How do the distributions of role-stereotypes differ across dif-1010

ferent types of architectures or business domains? Can role-stereotypes help us to better
understand the evolution of software over time? Can role-stereotypes be used for tailoring
test-generation strategies?
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